
MALLA REDDY INSTITUTE OF TECHNOLOGY & SCIENCE
(SPONSORED BY MALLA REDDY EDUCATIONAL SOCIETY)

Permanently Affiliated to JNTUH & Approved by AICTE, New Delhi

NBA & NAAC ‘A’ Accredited Institution, An ISO 9001:2015 Certified, Approved by UK

Accreditation Centre Granted Status of 2(f) & 12(b) under UGC Act. 1956, Govt. of

India.

 SOFTWARE PROCESS& PROJECT MANAGEMENT

 COURSE FILE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 (2022-2023)

Faculty In-Charge HOD-CSE

ANURADHA REDDY Dr. T,SRIKANTH

MALLA REDDY INSTITUTE OF TECHNOLOGY & SCIENCE

 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 IV Year B.Tech CSE –I Sem L T P C

 3 0 0 3

OBJECTIVES:

CS725PECS725PE: SOFTWARE PROCESS & PROJECT

MANAGEMENT

(Core Elective-V)

The goals of the course are as follows:

• To learn the importance of software process maturity & understand related concepts.

• Understanding the specific roles within a software organization as related to project

and process management

• Understanding the basic infrastructure competences (e.g., process modeling

and measurement)

• Understanding the basic steps of project planning, project

management, quality assurance, and process management and their

relationships

UNIT I

Software Process Maturity

Software maturity Framework, Principles of Software Process Change, Software

Process Assessment, The Initial Process, The Repeatable Process, The Defined Process, The

Managed Process, The Optimizing Process. Process Reference Models Capability

Maturity Model (CMM), CMMI, PCMM, PSP, TSP.

UNIT II

Software Project Management Renaissance Conventional Software Management,

Evolution of Software Economics, Improving Software Economics, The old way

and the new way. Life-Cycle Phases and Process artifacts Engineering and

Production stages, inception phase, elaboration phase, construction phase,

transition phase, artifact sets, management artifacts, engineering artifacts and

pragmatic artifacts, model based software architectures.

UNIT III

Workflows and Checkpoints of process

Software process workflows, Iteration workflows, Major milestones, Minor milestones, Periodic

status assessments.

Process Planning Workbreakdownstructures, Planningguidelines,

costandscheduleestimatingprocess, and iteration planning process,

Pragmatic planning.

UNIT IV

Project Organizations

Line-of- business organizations, project organizations, evolution of organizations, process

automation.

Project Control and process instrumentation

Thesevencore metrics, managementindicators, qualityindicators, life-cycleexpectations,

Pragmatic software metrics, and metrics automation.

UNIT V

CCPDS-R Case Study and Future Software Project Management Practices

Modern Project Profiles, Next-Generation software Economics, Modern Process Transitions.

TEXT BOOKS:

1. Managing the Software Process, Watts S. Humphrey, Pearson Education.

2. Software Project Management, Walker Royce, Pearson Education.

REFERENCE BOOKS:

1. Effective Project Management: Traditional, Agile, Extreme,

Robert Wysocki, Sixth edition, Wiley India, rp2011.

2. An Introduction to the Team Software Process, Watts S.

Humphrey, Pearson Education, 2000

3. Process Improvement essentials, James R. Persse, O’Reilly, 2006

4. Software Project Management, Bob Hughes & Mike Cotterell,

fourth edition, TMH, 2006

5. Applied Software Project Management, Andrew Stellman

& Jennifer Greene, O’Reilly, 2006.

OUTCOMES:

At the end of the course, the student shall be able to:

• Apply suitable capability Maturity model for specific scenarios &

determine the effectiveness.

• Describe and determine the purpose and importance of project management

from the perspectives of planning, tracking and completion of project

• Compare and differentiate organization structures and project structures.

• Implement a project to manage project schedule, expenses and

resource with the application of suitable project management tools

MALLA REDDY INSTITUTE OF TECHNOLOGY & SCIENCE

 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDEX

S. No

Unit
Topic Page no

1

I Software maturity Framework 1

2

I Principles of Software Process Change 2

3
I

Software Process Assessment 4

4
I The Initial Process, The Repeatable Process, The Defined

Process, The Managed Process,
6

5
I

The Optimizing Process 7

6
I Process Reference Models Capability Maturity Model

(CMM)
10

7
I

CMMI, PCMM, PSP, TSP 11

8
II Software Project Management Renaissance

Conventional Software Management
16

9
II Evolution of Software Economics, Improving

Software Economics
25

10
II The old way and the new way. Life-Cycle Phases and

Process artifacts Engineering and Production stages
34

11
II Inception phase, elaboration phase, construction

phase, transition phase,
38

12
II Artifact sets, management artifacts, engineering

artifacts and pragmatic artifacts
43

13
II

Model based software architectures 49

14
III Workflows and Checkpoints of process

Software process workflows
52

15
III Iteration workflows, Major milestones, Minor

milestones, Periodic status assessments.
56

16
III Process Planning Workbreakdownstructures, Planning

guidelines,
59

17

III Iteration planning

proces

63

18

IV Project Organizations- Line-of- business

organizations

65

19
IV

Project organization 66

20
IV

Evaluation of organization 67

21
IV

Process automation 69

22
IV Project Control and process instrumentation

71

23

V CCPDS-R Case Study and Future Software Project

Management Practices

75

24
V

Modern Project Profiles 75

25
V

Next-Generation software Economics 82

26
V

Modern Process Transitions 84

Software process and project management Page 1

UNIT I

Software Process Maturity

Software maturity Framework, Principles of Software Process Change, Software Process

Assessment, The Initial Process, The Repeatable Process, The Defined Process, The Managed

Process, The Optimizing Process.

Process Reference Models

Capability Maturity Model (CMM), CMMI, PCMM, PSP, TSP.

Part-1 software Process Maturity

Software Maturity Framework

The CMM focuses on the capability of software organizations to produce high- quality products

consistently and predictably. Software process capability is the inherent ability of a software

process to produce planned results.

• DEFINITION (Process) A sequence of steps performed for a given purpose. The process
integrates people, tools, and procedures.

• DEFINTION (Software Process) A set of activities, methods, practices, and
transformations that people employ to develop and maintain software and the associated
products (documents, etc.)

• DEFINTION (Software Process Capability) describes the range of expected results that
can be achieved by following a software process.

• DEFINITION (Software Process Performance) the actual results achieved by following
a software process.

• DEFINTION (Software Process Maturity) the extent to which a specific process is

explicitly defined, managed, measured, controlled, and effective. As a software
organization matures, it needs an infrastructure and culture to support its methods,

practices, and procedures so that they endure after those who originally defined them have
gone.

• DEFINTION (Institutionalization) is the building of infrastructure and culture to support

methods, practices, and procedures so that they are the ongoing way of doing business.

Software Process Maturity Framework Five

Maturity Levels:

• Initial: The software process is characterized by ad hoc, and occasionally even chaotic.
Few processes are defined, and success depends on individual effort and heroics.

• Repeatable: Basic project management processes are established to track cost, schedule,

and functionality. The necessary process discipline is in place to repeat earlier successes
on projects with similar applications.

• Defined: The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software process for the

organization. All projects use an approved, tailored version of the organization’s standard

software process for developing and maintaining software.

Managed: Detailed measures of the software process and product quality are collected. Both the

Software process and project management Page 2

software process and products are quantitative understood and controlled.

• Optimizing: Continuous process improvement is enabled by quantitative feedback from
the process and from piloting innovative ideas and technologies.

Basic Principles

- Automation of a poorly defined process will produce automation of poorly defined results

- Improvement should be made in some steps

- Educate/Train, Educate/Train, , Educate/Train
Principles of Software Process Change Software
process management has 2 key areas

• People

• Design methods
People: A good mix of talent is required. The best people are always in short supply. You probably

have about the best team you can get right now. With proper leadership, education, training and

support, most people can do better work than they are currently doing.

Design: When domain knowledge is combined with the ability to produce a good design, a quality

product will result.

Six Basic Principles of Software Process Change

1. Major changes to the software process must start at the top

- Major changes requires leadership. Managers must provide good leadership, even though

they may not do the work; they must set priorities: furnish resources and provide continuing

support.

2. Ultimately, everyone must be involved.

- With an immature software process, software professionals are forced to improvise

solutions. in a mature process, these individual actions are more structured, efficient and

reinforcing. People are the most important aspect. It's necessary to focus on repairing the

process and not the people.

3. Effective changes require the team to have common goals and knowledge of the

current process.

- An effective change program requires a reasonable understanding of the current status.

An assessment is an effective way to gain this understanding. Software professionals

generally need most help in controlling requirements., coordinating changes, making plans.

managing interdependencies and coping with system design issues.

Software process and project management Page 3

4. Change is continuous

- One of the most difficult things for a management team to recognize is that human

interactive processes are never static. Both problems and people are in constant flux, and

this fluidity all for periodic adjustment of tasks and relationships. In dealing with these

dynamics, 3 points are important.

- Relative changes generally make things worse

-Every defect is an improvement opportunity

-Crisis prevention is more important than crisis recovery

5. Software process changes will not be retained without conscious effort and periodic

reinforcements

- Precise and accurate work is hard. Its rarely sustained for long without reinforcement.

Human adoption of new process methods involves 4 stages

- Installation, Practice , Proficiency , Naturalness

6. Software process improvement requires investment

- While the need for dedicating resources to improvement seems self- evident it's

surprising how often managers rely on exhorting their people to try harder

- To improve the aft rare process someone must work on it

- Unplanned process improvement is wishful thinking.

A software process assessment is a disciplined examination of the software processes used by an

organization, based on a process model. The assessment includes the identification and

characterization of current practices, identifying areas of strengths and weaknesses, and the ability

of current practices to control or avoid significant causes of poor (software) quality, cost, and

schedule.

A software assessment (or audit) can be of three types.

• A self-assessment (first-party assessment) is performed internally by an organization's

own personnel.

• A second-party assessment is performed by an external assessment team or the

organization is assessed by a customer.

• A third-party assessment is performed by an external party or (e.g., a supplier being

assessed by a third party to verify its ability to enter contracts with a customer).

Software process assessments are performed in an open and collaborative environment. They

are for the use of the organization to improve its software

Software process and project management Page 4

processes, and the results are confidential to the organization. The organization being assessed

must have members on the assessment team.

Software Process Maturity Assessment

The scope of a software process assessment can cover all the processes in the organization, a

selected subset of the software processes, or a specific project. Most of the standard-based process

assessment approaches are invariably based on the concept of process maturity.

When the assessment target is the organization, the results of a process assessment may differ,

even on successive applications of the same method. There are two reasons for the different

results. They are,

• The organization being investigated must be determined. For a large company, several

definitions of organization are possible and therefore the actual scope of appraisal may

differ in successive assessments.

• Even in what appears to be the same organization, the sample of projects selected to

represent the organization may affect the scope and outcome.

When the target unit of assessment is at the project level, the assessment should include all

meaningful factors that contribute to the success or failure of the project. It should not be limited

by established dimensions of a given process maturity model. Here the degree of implementation

and their effectiveness as substantiated by project data are assessed.

Process maturity becomes relevant when an organization intends to embark on an overall long-

term improvement strategy. Software project assessments should be independent assessments in

order to be objective.

Software Process Assessment Cycle

According to Paulk and colleagues (1995), the CMM-based assessment approach uses a six-step

cycle. They are −

• Select a team - The members of the team should be professionals knowledgeable in

software engineering and management.

• The representatives of the site to be appraised complete the standard process maturity

questionnaire.

Software process and project management Page 5

• The assessment team performs an analysis of the questionnaire responses and identifies

the areas that warrant further exploration according to the CMM key process areas.

• The assessment team conducts a site visit to gain an understanding of the software

process followed by the site.

• The assessment team produces a list of findings that identifies the strengths and

weakness of the organization's software process.

• The assessment team prepares a Key Process Area (KPA) profile analysis and presents

the results to the appropriate audience.

For example, the assessment team must be led by an authorized SEI Lead Assessor. The team

must consist of between four to ten team members. At least, one team member must be from the

organization being assessed, and all team members must complete the SEI's Introduction to the

CMM course (or its equivalent) and the SEI's CBA IPI team training course. Team members must

also meet some selection guidelines.

With regard to data collection, the CBA IPI relies on four methods −

• The standard maturity questionnaire

• Individual and group interviews

• Document reviews

• Feedback from the review of the draft findings with the assessment

participants

Software process and project management Page 6

SCAMPI

The Standard CMMI Assessment Method for Process Improvement (SCAMPI) was developed to

satisfy the CMMI model requirements (Software Engineering Institute, 2000). It is also based on

the CBA IPI. Both the CBA IPI and the SCAMPI consist of three phases −

• Plan and preparation

• Conduct the assessment onsite

• Report results

The activities for the plan and preparation phase include −

• Identify the assessment scope

• Develop the assessment plan

• Prepare and train the assessment team

• Make a brief assessment of participants

• Administer the CMMI Appraisal Questionnaire

• Examine the questionnaire responses

• Conduct an initial document review

The activities for the onsite assessment phase include −

Software process and project management Page 7

• Conduct an opening meeting

• Conduct interviews

• Consolidate information

• Prepare the presentation of draft findings

• Present the draft findings

• Consolidate, rate, and prepare the final findings

Software process and project management Page 8

Part -2 Process Reference Models

Capability Maturity Model(CMM)

What is CMM?

Capability Maturity Model is used as a benchmark to measure the maturity of an

organization's software process.

CMM was developed at the Software engineering institute in the late 80's. It was developed as a

result of a study financed by the U.S Air Force as a way to evaluate the work of subcontractors.

CMM was first introduced in late 80's in U.S Air Force to evaluate the work of subcontractors.
Later on, with improved version, it was implemented to track the quality of the software

development system.

The entire CMM level is divided into five levels.

Software process and project management Page 9

• Level 1 (Initial): Where requirements for the system are usually uncertain,

misunderstood and uncontrolled. The process is usually chaotic and ad-hoc.

• Level 2 (Managed): Estimate project cost, schedule, and functionality. Software

standards are defined

• Level 3 (Defined): Makes sure that product meets the requirements and intended

use

• Level 4 (Quantitatively Managed): Manages the project's processes and sub- processes

statistically

• Level 5 (Maturity): Identify and deploy new tools and process
improvements to meet needs and business objectives

Limitations of CMM Models

• CMM determines what a process should address instead of how it should be

implemented

• It does not explain every possibility of software process improvement

• It concentrates on software issues but does not consider strategic business planning,

adopting technologies, establishing product line and managing human resources

• It does not tell on what kind of business an organization should be in

• CMM will not be useful in the project having a crisis right now

Why Use CMM?

Today CMM act as a "seal of approval" in the software industry. It helps in various ways to
improve the software quality.

• It guides towards repeatable standard process and hence reduce the learning time on

how to get things done

• Practicing CMM means practicing standard protocol for development, which means it not

only helps the team to save time but also gives a clear view of what to do and what to

expect

• The quality activities gel well with the project rather than thought of as a separate

event

• It acts as a commuter between the project and the team

• CMM efforts are always towards the improvement of the process

Software process and project management Page 10

Capability maturity model integration (CMMI) is an approach or methodology for improving and

refining the software development process within an organization. It is based on a process model

or a structured collection of practices.

CMMI is used to guide the improvement process across a project, division or even an entire

organizational structure. It also allows companies to integrate organizational functions that are

traditionally separate, set goals for process improvements and priorities, provide guidance for

quality processes, and act as a point of reference for appraising processes.

Difference between CMM and CMMI

1. CMM came first but was later improved and was succeeded by CMMI.

2. Different sets of CMMS have problems with overlaps, contradictions, and lack of
standardization. CMMI later addressed these problems.

3. Initially, CMM describes specifically about software engineering whereas CMMI
describes integrated processes and disciplines as it applies both to software and

systems engineering.

4. CMMI is much more useful and universal than the older CMM.

http://www.differencebetween.net/language/difference-between-much-and-many/

Software process and project management Page 11

People Capability Maturity Model (PCMM)

The People Capability Maturity Model consists of five maturity levels. Each maturity level is

an evolutionary plateau at which one or more domains of the organization’s processes are

transformed to achieve a new level of organizational capability. The five levels of People CMM

are defined as follows:

1. At PCMM Level 1, an organization has no consistent way of performing workforce practices.

Most workforce practices are applied without analysis of impact.

2. At PCMM Level 2, organizations establish a foundation on which they deploy common workforce
practices across the organization. The goal of Level 2 is to have managers take responsibility for

managing and developing their people. For example, the first benefit an organization experiences
as it achieves Level 2 is a reduction in voluntary turnover. The turnover costs that are avoided by

improved workforce retention more than pay for the improvement costs associated with achieving
Level 2.

3. At PCMM Level 3, the organization identifies and develops workforce competencies and aligns

workforce and work group competencies with business strategies and objectives. For example, the

workforce practices that were implemented at Level 2 are now standardized and adapted to
encourage and reward growth in the organization’s workforce competencies.

4. At PCMM Level 4, the organization empowers and integrates workforce competencies and

manages performance quantitatively. For example, the organization is able to predict its capability

for performing work because it can quantify the capability of its workforce and of the competency-
based processes they use in performing their assignments.

5. At PCMM Level 5, the organization continuously improves and aligns personal, work-group, and

organizational capability. For example, at Maturity Level 5, organizations treat continuous

improvement as an orderly business process to be performed in an orderly way on a regular basis.

The People Capability Maturity Model was designed initially for knowledge- intense

organizations and workforce management processes. However, it can be applied in almost any

organizational setting, either as a guide in implementing workforce improvement activities or as

a vehicle for assessing workforce practices.

https://www.mbaknol.com/international-business/managing-an-international-workforce/
https://www.mbaknol.com/human-resource-management/strategic-innovation-in-human-resource-management/
https://www.mbaknol.com/human-resource-management/strategic-innovation-in-human-resource-management/

Software process and project management Page 12

Personal Software Process (PSP)

 The Personal Software Process (PSP) shows engineers how to

- manage the quality of their projects

- make commitments they can meet

- improve estimating and planning

- reduce defects in their products

PSP emphasizes the need to record and analyze the types of errors you make, so you

can develop strategies eliminate them.

PSP model Framework Activities

 Planning – isolates requirements and based on these develops both size & resource
estimates. A defect estimate is made.

 High level Design – external specification of all components. All issues are recorded and
tracked.

 High level Design Review- formal verification to uncover errors

 Development- metrics are maintained for all important tasks & work results.

 Postmortem- using measures & metrics collected effectiveness of process is determined
an improved.

Because personnel costs constitute 70 percent of the cost of software development, the

skills and work habits of engineers largely determine the results of the software

development process.

Based on practices found in the CMMI, the PSP can be used by engineers as a guide to a

disciplined and structured approach to developing software. The

Software process and project management Page 13

PSP is a prerequisite for an organization planning to introduce the TSP.

 The PSP can be applied to many parts of the software development process, including

- small-program development

- requirement definition

Team Software Process (TSP)

 The Team Software Process (TSP), along with the Personal Software Process,
helps the high-performance engineer to

- ensure quality software products

document writing

systems tests

systems maintenance

enhancement of large software systems

Software process and project management Page 14

- create secure software products

- improve process management in an organization

TSP Framework Activities

 Launch high level design

 Implementation

 Integration

 Test

 postmortem

 Engineering groups use the TSP to apply integrated team concepts to the development

of software-intensive systems. A launch process walksteams and their managers
through

- establishing goals

- defining team roles

- assessing risks

- producing a team plan

Benefits of TSP

 The TSP provides a defined process framework for managing, tracking and reporting the
team's progress.

 Using TSP, an organization can build self-directed teams that plan and track their work,

establish goals, and own their processes and plans. These can be pure software teams or
integrated product teams of 3 to 20 engineers.

 TSP will help your organization establish a mature and disciplined engineering
practice that produces secure, reliable software.

Software process and project management Page 15

UNIT – II

Software Project Management Renaissance

Conventional Software Management, Evolution of Software Economics, Improving Software Economics,

The old way and the new way.

Life-Cycle Phases and Processartifacts

Engineering and Production stages, inception phase, elaboration phase, construction phase, transition phase,

artifact sets, management artifacts, engineering artifacts and pragmatic artifacts, model based software

architectures

Part –I Software Project Management Renaissance

Conventional Software Management

1. The best thing about software is its flexibility:

- It can be programmed to do almost anything.

2. The worst thing about software is its flexibility:

- The “almost anything” characteristic has made it difficult to plan, monitor, and
control software

development.

3. In the mid-1990s, three important analyses were performed on the software engineering industry.

All three analyses given the same general conclusion:-

“The success rate for software

projects is very low”. They Summarized as follows:

1. Software development is still highly unpredictable. Only 10% of software projects are delivered

successfully within initial budget and scheduled time.

2. Management discipline is more differentiator in success or failure than are technology advances.

3. The level of software scrap and rework is indicative of an immature process.

Software management process framework:

WATERFALLL MODEL

1. It is the baseline process for most conventional software projects have used.

2. We can examine this model in two ways:

IN THEORY

IN PRACTICE

IN THEORY:-

In 1970, Winston Royce presented a paper called “Managing the

Development of Large Scale Software Systems” at IEEE WESCON.

Where he made three primary points:

1. There are two essential steps common to the development of computer programs:

- analysis

Software process and project management Page 16

- coding

2. In order to mange and control all of the intellectual freedom associated with software

development one should follow the following steps:

- System requirements definition

- Software requirements definition

- Program design and testing

These steps addition to the analysis and coding steps

3. Since the testing phase is at the end of the development cycle in the waterfall model, it may be risky and

invites failure.

Software process and project management Page 17

So we need to do either the requirements must be modified or a substantial design changes is warranted by

breaking the software in to different pieces.

-There are five improvements to the basic waterfall model that would eliminate most of the development risks

are as follows:

a) Complete program design before analysis and coding begin (program design comes first):-

- By this technique, the program designer give surety that the software will not fail because of storage, timing, and

data fluctuations.

- Begin the design process with program designer, not the analyst or programmers.

- Write an overview document that is understandable, informative, and current so that every worker on the project

can gain an elemental understanding of the system.

b) Maintain current and complete documentation (Document the design):-

-It is necessary to provide a lot of documentation on most software programs.

- Due to this, helps to support later modifications by a separate test team, a separate maintenance team, and

operations personnel who are not software literate.

c) Do the job twice, if possible (Do it twice):-

- If a computer program is developed for the first time, arrange matters so that the version finally delivered

to the customer for operational deployment is actually the second version insofar as critical design/operations are

concerned.

- “Do it N times” approach is the principle of modern-day iterative development.

d) Plan, control, and monitor testing:-

- The biggest user of project resources is the test phase. This is the phase of greatest risk in terms of cost and

schedule.

- In order to carryout proper testing the following things to be done:

i) Employ a team of test specialists who were not responsible for the original design.

ii) Employ visual inspections to spot the obvious errors like dropped minus signs, missing factorsof

two, jumps to wrong addresses.

iii) Test every logic phase.

iv) Employ the final checkout on the target computer.

e) Involve the customer:-

- It is important to involve the customer in a formal way so that he has committed himself at earlier points

before final delivery by conducting some reviews such as,

i) Preliminary software review during preliminary program design step.

ii) Critical software review during program design.

iii) Final software acceptance review following testing.

IN PRACTICE:-

- Whatever the advices that are given by the software developers and the theory behind the waterfall model, some

software projects still practice the conventional software management approach.

Projects intended for trouble frequently exhibit the following symptoms:

i) Protracted (delayed) integration

- In the conventional model, the entire system was designed on paper, then implemented all at once,

then integrated. Only at the end of this process was it possible to perform system testing to verify that the

Software process and project management Page 18

are process and project management

fundamental architecture was sound.

Softw Page 19

ii) Late Risk Resolution

- A serious issues associated with the waterfall life cycle was the lack of early risk resolution.

The risk profile of a waterfall model is,

- It includes four distinct periods of risk exposure, where risk is defined as “the probability of missing a cost,

schedule, feature, or quality goal”.

iii) Requirements-Driven Functional Decomposition

-Traditionally, the software development process has been requirement-driven: An attempt is made to provide a

precise requirements definition and then to implement exactly those requirements.

-This approach depends on specifying requirements completely and clearly before other development activities

begin.

- It frankly treats all requirements as equally important.

- Specification of requirements is a difficult and important part of the software development

process. iv) Adversarial Stakeholder Relationships

The following sequence of events was typical for most contractual software efforts:

- The contractor prepared a draft contact-deliverable document that captured an intermediate artifact and delivered

it to the customer for approval.

- The customer was expected to provide comments (within 15 to 30 days)

- The contractor integrated these comments and submitted a final version for approval (within 15 to 30 days)

Project Stakeholders :

➢ Stakeholders are the people involved in or affected by project activities

➢ Stakeholders include

➢ the project sponsor and project team

➢ support staff

➢ customers

➢ users

➢ suppliers

➢ opponents to the project

Software process and project management Page 20

v) Focus on Documents and Review Meetings

- The conventional process focused on various documents that attempted to describe the software product.

- Contractors produce literally tons of paper to meet milestones and demonstrate progress to stakeholders, rather

than spend their energy on tasks that would reduce risk and produce quality software.

- Most design reviews resulted in low engineering and high cost in terms of the effort and schedule involved in

their preparation and conduct.

Software process and project management Page 21

Software process and project management Page 22

Software process and project management Page 23

Barry Boehm‟s Top 10 “Industrial Software Metrics”:

1) Finding and fixing a software problem after delivery costs 100 times more than finding and fixing

the problem in early design phases.

2) You can compress software development schedules 25% of nominal (small), but no more.

3) For every $1 you spend on development, you will spend $2 on maintenance.

4) Software development and maintenance costs are primarily a function of the number of source lines

of code.

5) Variations among people account for the biggest difference in software productivity.

6) The overall ratio of software to hardware costs is still growing. In 1955 it was 15:85; in 1985, 85:15.

7) Only about 15% of software development effort is devoted to programming.

8) Software systems and products typically cost 3 times as much per SLOC as individual software

programs. Software-system products cost 9 times as much.

9) Walkthroughs catch 60% of the errors.

10) 80% of the contribution comes from 20% of the contributors.

- 80% of the engineering is consumed by 20% of the requirements.

- 80% of the software cost is consumed by 20% of the components.

- 80% of the errors are caused by 20% of the components.

- 80% of the software scrap and rework is caused by 20% of the errors.

- 80% of the resources are consumed by 20% of the components.

- 80% of the engineering is accomplished by 20% of the tools.

- 80% of the progress is made by 20% of the people.

Software process and project management Page 24

Evolution of Software Economics

Project Sizes :

• Size as team strength could be :

– Trivial (Minor) Size: 1 person

– Small Size: 5 people

– Moderate Size: 25 people

– Large Size: 125 people

– Huge Size: 625 people

• The more the size, the greater are the costs of management overhead, communication,

synchronizations among various projects or modules, etc.

Reduce Software Size:

The less software we write, the better it is for project management and for product quality

- The cost of software is not just in the cost of „coding‟ alone; it is also in

Analysis of requirements

– Design

– Review of requirements, design and code

– Test Planning and preparation

– Testing

– Bug fix

– Regression testing

– „Coding‟ takes around 15% of development cost

- Clearly, if we reduce 15 hrs of coding, we can directly reduce 100 hrs of development effort, and

also reduce the project team size appropriately !

Size reduction is defined in terms of human-generated source code.

Most often, this might still mean that the computer-generated executable code is at least the same or even more

- Software Size could be reduced by

– Software Re-use

– Use of COTS (Commercial Off-The Shelf Software)

– Programming Languages

PRAGMATIC SOFTWARE ESTIMATION:

- If there is no proper well-documented case studies then it is difficult to estimate the cost of the

Software process and project management Page 25

software. It is one of the critical problem in software cost estimation.

- But the cost model vendors claim that their tools are well suitable for estimating

- iterative development projects.

- In order to estimate the cost of a project the following three topics should be considered,

1) Which cost estimation model to use.

2) Whether to measure software size in SLOC or function point.

3) What constitutes a good estimate.

- There are a lot of software cost estimation models are available such as, COCOMO,

CHECKPOINT, ESTIMACS, Knowledge Plan, Price-S,

ProQMS, SEER, SLIM, SOFTCOST, and SPQR/20.

- Of which COCOMO is one of the most open and well-documented cost estimation models

- The software size can be measured by using

1) SLOC 2) Function points

- Most software experts argued that the SLOC is a poor measure of size. But it has some value in the

software Industry.

- SLOC worked well in applications that were custom built why because of easy to automate and

instrument.

- Now a days there are so many automatic source code generators are available and there are so

many advanced higher-level languages are available. So SLOC is a uncertain measure.

- The main advantage of function points is that this method is independent of the technology and is

therefore a much better primitive unit for comparisons among projects and organizations.

- The main disadvantage of function points is that the primitive definitions are abstract and

measurements are not easily derived directly from the evolving artifacts.

- Function points is more accurate estimator in the early phases of a project life cycle. In later

phases, SLOC becomes a more useful and precise measurement basis of various metrics perspectives.

- The most real-world use of cost models is bottom-up rather than top-down.

- The software project manager defines the target cost of the software, then manipulates the parameters and

sizing until the target cost can be justified.

Software process and project management Page 26

Improving Software Economics

- It is not that much easy to improve the software economics but also difficult to measure and validate.

- There are many aspects are there in order to improve the software economics they are, Size, Process,

Personnel, Environment and quality.

- These parameters (aspects) are not independent they are dependent. For example, tools enable size

reduction and process improvements, size- reduction approaches lead to process changes, and

process improvements drive tool requirements.

- GUI technology is a good example of tools enabling a new and different process. GUI builder tools

permitted engineering teams to construct an executable user interface faster and less cost.

- Two decades ago, teams developing a user interface would spend extensive time analyzing factors,

screen layout, and screen dynamics. All this would done on paper. Where as by using GUI, the paper

descriptions are not necessary.

Along with these five basic parameters another important factor that has influenced software

technology improvements across the board is the ever- increasing advances in hardware Performance.

Software process and project management Page 27

REDUCING SOFTWARE PRODUCT SIZE:

- By choosing the type of the language

- By using Object-Oriented methods and visual modeling

- By reusing the existing components and building reusable components &

By using commercial components,we can reduce the product size of a software.

OBJECT ORIENTED METHODS AND VISUAL MODELING:

- There has been a widespread movements in the 1990s toward Object- Oriented

technology.

- Some studies concluded that Object-Oriented programming languages appear to benefit both software

productivity and software quality. One of such Object-Oriented method is UML-Unified Modeling Language.

Booch described the following three reasons for the success of the projects that are using Object-

Oriented concepts:

1) An OO-model of the problem and its solution encourages a common vocabulary between the

end user of a system and its developers, thus creating a shared understanding of the problem being solved.

2) The use of continuous integration creates opportunities to recognize risk early and make

incremental corrections without weaken the entire development effort.

3) An OO-architecture provides a clear separation among different elements of a system, crating

firewalls that prevent a change in one part of the system from the entire architecture.

He also suggested five characteristics of a successful OO-Project,

1) A cruel focus on the development of a system that provides a well understood collection

of essential minimal characteristics.

2) The existence of a culture that is centered on results, encourages

communication, and yet is not afraid to fail.

3) The effective use of OO-modeling.

Software process and project management Page 28

4) The existence of a strong architectural vision.

5) The application of a well-managed iterative and incremental development life cycle.

REUSE:

Organizations that translates reusable components into commercial

products has the following characteristics:

- They have an economic motivation for continued support.

- They take ownership of improving product quality, adding new features and

transitioning to new technologies.

- They have a sufficiently broad customer base to be profitable.

COMMERCIAL COMPONENTS

It is an Organization‟s policies, procedures, and practices for pursuing

a software-intensive line of business.

The focus of this process is of organizational economics, long-term strategies, and a software ROI.

- Macro process:

A project‟s policies, and practices for producing a complete software

product within certain cost, schedule, and quality constraints.

The focus of the macroprocess is on creating an sufficient instance of the

metaprocess for a specific set of constraints.

Software process and project management Page 29

- Micro process:

A projects team‟s policies, procedures, and practices for achieving

an artifact of a software process.

The focus of the microprocess is on achieving an intermediate product baseline with sufficient

functionality as economically and rapidly as practical.

The objective of process improvement is to maximize the allocation of resources to productive

activities and minimize the impact of overhead activities on resources such as personnel, computers, and

schedule.

Software process and project management Page 30

IMPROVING TEAM EFFECTIVENESS:

- COCOMO model suggests that the combined effects of personnel skill and experience can have an

impact on productivity as much as a factor of four over the unskilled personnel.

- Balance and coverage are two of the most important features of excellent teams. Whenever a

team is in out of balance then it is vulnerable.

- It is the responsibility of the project manager to keep track of his teams. Since teamwork is much more

important than the sum of the individuals.

Boehm – staffing principles:

- The principle of top talent: Use better and fewer people.

- The principle of job matching: Fit the tasks to the skills and motivation of the people available.

- The principle of career progression: An organization does best in the long run by

helping its people to self-actualize.

4) The principle of team balance: Select people who will complement and synchronize with

one another.

5) The principle of phase-out: Keeping a misfit on the team doesn‟t benefit anyone.

In general, staffing is achieved by these common methods:

– If people are already available with required skill set, just take them

– If people are already available but do not have the required skills, re-train them

– If people are not available, recruit trained people

– If you are not able to recruit skilled people, recruit and train people

Staffing of key personnel is very important:

- Project Manager

- Software Architect

Software process and project management Page 31

Important Project Manager Skills:

Hiring skills. Few decisions are as important as hiring decisions. Placing the right person in the right

job seems obvious but is surprisingly hard to achieve.

Customer-interface skill. Avoiding adversarial relationships among stake- holders is a prerequisite

for success.

Decision-making skill. The jillion books written about management have failed to provide a clear

definition of this attribute. We all know a good leader when we run into one, and decision- making

skill seems obvious despite its intangible definition.

Team-building skill. Teamwork requires that a manager establish trust, motivate progress, exploit

eccentric prima donnas, transition average people into top performers, eliminate misfits, and

consolidate diverse opinions into a team direction.

Selling skill. Successful project managers must sell all stakeholders (including themselves) on decisions

and priorities, sell candidates on job positions, sell changes to the status quo in the face of resistance, and

sell achievements against objectives. In practice, selling requires continuous negotiation, compromise, and

empathy.

Important Software Architect Skills:

• Technical Skills: the most important skills for an architect. These must include skills in both, the problem

domain and the solution domain

• People Management Skills: must ensure that all people understand and implement the architecture

in exactly the way he has conceptualized it. This calls for a lot of people management skills and

patience.

• Role Model: must be a role model for the software engineers – they would emulate all good (and

also all bad !) things that the architect does

IMPROVING AUTOMATION THROUGH SOFTWARE

ENVIRONMENTS

The following are the some of the configuration management environments which provide the

foundation for executing and implementing the process:

Planning tools, Quality assurance and analysis tools, Test tools, and User interfaces provide crucial

automation support for evolving the software engineering artifacts.

Software process and project management Page 32

Round-trip engineering: is a term used to describe the key capability of environments that support

iterative development.

Forward engineering: is the automation of one engineering artifact from another, more abstract

representation. Ex: compilers and linkers

Reverse engineering: is the generation of modification of more abstract representation from an existing

artifact. Ex: creating visual design model from a source code.

Software process and project management Page 33

PEER INSPECTIONS: A PRAGMATIC VIEW:

THE OLD WAY AND THE NEW

- Over the past two decades software development is a re-engineering process. Now it is replaced by

advanced software engineering technologies.

- This transition is was motivated by the unsatisfactory demand for the software and reduced cost.

THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

Based on many years of software development experience, the software industry proposed so many

principles (nearly 201 by – Davis‟s). Of which Davis‟s top 30 principles are:

1) Make quality #1: Quality must be quantified and mechanisms put into place to motivate its achievement.

2) High-quality software is possible: In order to improve the quality of the product we need to involving

the customer, select the prototyping, simplifying design, conducting inspections, and hiring the best people.

3) Give products to customers early: No matter how hard you try to learn user‟s needs during the

requirements phase, the most effective way to determine real needs is to give users a product and let them play

withit.

4) Determine the problem before writing the requirements: Whenever a problem is raised most engineers

provide a solution. Before we try to solve a problem, be sure to explore all the alternatives and don‟t be blinded

by the understandable solution.

Software process and project management Page 34

5) Evaluate design alternatives: After the requirements are greed upon, we must examine a variety of

architectures and algorithms and choose the one which is not used earlier.

6) Use different languages for different phases: Our industry‟s main aim is to provide simple solutions to

complex problems. In order to accomplish this goal choose different languages for different modules/phases

ifrequired.

7) Minimize intellectual distance: We have to design the structure of a software is as close as possible to

the real-world structure.

8) Put techniques before tools: An un disciplined software engineer with a tool becomes a dangerous,

undisciplined software engineer.

9) Get it right before you make it faster: It is very easy to make a working program run faster than it is

to make a fast program work. Don‟t worry about optimization during initial coding.

10) Inspect the code: Examine the detailed design and code is a much better way to find the errors

than testing.

11) Good management is more important than good technology

12) People are the key to success: Highly skilled people with appropriate experience, talent, and

training are key. The right people with insufficient tools, languages, and process will succeed.

13) Follow with care: Everybody is doing something but does not make it right for you. It may be right,

but you must carefully assess its applicability to your environment.

14) Take responsibility: When a bridge collapses we ask “what did the engineer do wrong?”. Similarly if

the software fails, we ask the same. So the fact is in every engineering discipline, the best methods can be used

to produce poor results and the most out of date methods to produce stylish design.

15) Understand the customer’s priorities. It is possible the customer would tolerate 90% of the

functionality delivered late if they could have 10% of it on time.

16) Plan to throw one away .One of the most important critical success factors is whether or not a product

is entirely new. Such brand-new applications, architectures, interfaces, or algorithms rarely work the first

time.

17) Design for change. The architectures, components, and specification techniques you

use must accommodate change.

18) Design without documentation is not design. I have often heard software engineers say, “I have

finished the design. All that is left is thedocumentation.”

vi) Use tools, but be realistic. Software tools make their users more efficient.

Software process and project management Page 35

vii) Avoid tricks. Many programmers love to create programs with tricks- constructs that perform a

function correctly, but in an obscure way. Show the world how smart you are by avoiding tricky

code.

viii) Encapsulate. Information-hiding is a simple, proven concept that results in software that is easier to

test and much easier to maintain.

ix) Use coupling and cohesion. Coupling and cohesion are the best ways to

measure software‟s inherent maintainability and adaptability.

x) Use the McCabe complexity measure. Although there are many metrics available to report the inherent

complexity of software, none is as intuitive and easy to use as Tom McCabe‟s.

xi) Don’t test your own software. Software developers should never be the primary testers of their own

software.

xii) Analyze causes for errors. It is far more cost-effective to reduce the effect of an error by preventing

it than it is to find and fix it. One way to do this is to analyze the causes of errors as they are detected.

xiii) Realize that software’s entropy increases. Any software system that undergoes continuous change will

grow in complexity and become more and more disorganized.

THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT

1) Base the process on an architecture-first approach: (Central design element)

- Design and integration first, then production and test

2) Establish an iterative life-cycle process: (The risk management element)

- Risk control through ever-increasing function, performance, quality.

With today‟s sophisticated systems, it is not possible to define the entire problem, design

the entire solution, build the software, then test the end product in sequence. Instead, and iterative process that

refines the problem understanding, an effective solution, and an effective plan over several iterations

encourages balanced treatment of all stakeholder objectives.

Major risks must be addressed early to increase predictability and avoid expensive downstream

scrap and rework.

3) Transition design methods to emphasize component-based development: (The technology element)

Moving from LOC mentally to component-based mentally is necessary to reduce the

Software process and project management Page 36

amount of human-generated source code and custom development.A component is a cohesive set of

preexisting lines of code, either in source or executable format, with a defined interface and behavior.

Establish a change management environment: (The control element)

- Metrics, trends, process instrumentation

The dynamics of iterative development, include concurrent workflows by different teams working

on shared artifacts, necessitates objectively controlled baseline.

4) Enhance change freedom through tools that support round-trip engineering: (The automation

element)

- Complementary tools, integrated environment

Round-trip engineering is the environment support necessary to automate and synchronize

engineering information in different formats. Change freedom is necessary in an iterative process.

5) Capture design artifacts in rigorous, model-based notation:

- A model-based approach supports the evolution of semantically rich graphical and textual design

notations.

- Visual modeling with rigorous notations and formal machine- process able language provides more

objective measures than the traditional approach of human review and inspection of ad hoc design

representations in paper doc.

6) Instrument the process for objective quality control and progress assessment:

- Life-cycle assessment of the progress and quality of all intermediate product must be integrated into

the process.

- The best assessment mechanisms are well-defined measures derived directly from the evolving

engineering artifacts and integrated into all activities and teams.

7) Use a demonstration-based approach to assess intermediate artifacts:

Transitioning from whether the artifact is an early prototype, a baseline architecture, or a beta

capability into an executable demonstration of relevant provides more tangible understanding of the design

tradeoffs, early integration and earlier elimination of architectural defects.

Software process and project management Page 37

8) Plan intermediate releases in groups of usage scenarios with evolving levels

of detail:

9) Establish a configurable process that economically scalable:

No single process is suitable for all software developments. The process must ensure that

there is economy of scale and ROI.

Software process and project management Page 38

Software process and project management Page 39

PART-II Life cycle phases and process artifacts

LIFE-CYCLE PHASES

- If there is a well defined separation between “research and development” activities and“production”

activities then the software is said to be in successful development process.

- Most of the software’s fail due to the following characteristics ,

1) An overemphasis on research and development.

2) An overemphasis on production.

ENGINEERING AND PRODUCTION STAGES :

To achieve economics of scale and higher return on investment, we must move toward a software

manufacturing process which is determined by technological improvements in process automation

andcomponent based development.

There are two stages in the software development process

1) The engineering stage: Less predictable but smaller teams doing design and production activities.

This stage is decomposed into two distinct phases inception and elaboration.

2) The production stage: More predictable but larger teams doing construction, test, and deployment

activities. This stage is also decomposed into two distinct phases construction and transition.

These four phases of lifecycle process are loosely mapped to the conceptual framework of the spiral model is

as shown in the following figure.

- In the above figure the size of the spiral corresponds to the inactivity of the project with respect to the

breadth and depth of the artifacts that have been developed.

- This inertia manifests itself in maintaining artifact consistency, regression testing, documentation, quality

analyses, and configuration control.

- Increased inertia may have little, or at least very straightforward, impact on changing any given discrete

component or activity.

- However, the reaction time for accommodating major architectural changes, major requirements changes,

major planning shifts, or major organizational perturbations clearly increases in subsequent phases.

1. INCEPTION

PHASE:

The main goal of this phase is to achieve agreement among stakeholders on the life-cycle objectives for the

project.

PRIMARY OBJECTIVES

1) Establishing the project’s scope and boundary conditions

2) Distinguishing the critical use cases of the system and the primary scenarios of operation

3) Demonstrating at least one candidate architecture against some of the primary scenarios

4) Estimating cost and schedule for the entire project

5) Estimating potential risks

Software process and project management Page 40

ESSENTIAL ACTIVITIES:

1) Formulating the scope of the project

2) Synthesizing the architecture

3) Planning and preparing a business case

2. ELABORATION PHASE

- It is the most critical phase among the four phases.

- Depending upon the scope, size, risk, and freshness of the project, an executable architecture prototype is

built in one or more iterations.

- At most of the time the process may accommodate changes, the elaboration phase activities must ensure that

the architecture, requirements, and plans are stable. And also the cost and schedule for the completion of the

development can be predicted within an acceptable range.

PRIMARY OBJECTIVES

1) Base lining the architecture as rapidly as practical

2) Base lining the vision

3) Base lining a high-reliability plan for the construction phase

4) Demonstrating that the baseline architecture will support the vision at a reasonable cost in a reasonable

time.

ESSENTIAL ACTIVITIES

1) Elaborating the vision

2) Elaborating the process and infrastructure

3) Elaborating the architecture and selecting components

3. CONSTRUCTION PHASE

During this phase all the remaining components and application features are developed software is integrated

where ever required.

- If it is a big project then parallel construction increments are generated.

PRIMARY OBJECTIVES

1) Minimizing development costs

2) Achieving adequate quality as rapidly as practical

3) Achieving useful version (alpha, beta, and other releases) as rapidly as practical

ESSENTIAL ACTIVITIES

1) Resource management, control, and process optimization

2) Complete component development and testing evaluation criteria

3) Assessment of product release criteria of the vision

Software process and project management Page 41

4. TRANSITION PHASE

Whenever a project is grown-up completely and to be deployed in the end-user domain this phase is called

transition phase. It includes the following activities:

Software process and project management Page 42

1) Beta testing to validate the new system against user expectations

2) Beta testing and parallel operation relative to a legacy system it is replacing

3) Conversion of operational databases

4) Training of users and maintainers

PRIMARY OBJECTIVES

1) Achieving user self-supportability

2) Achieving stakeholder concurrence

3) Achieving final product baseline as rapidly and cost-effectively as practical

ESSENTIAL ACTIVITIES

1) Synchronization and integration of concurrent construction increments into consistent deployment

baselines

2) Deployment-specific engineering

3) Assessment of deployment baselines against the complete vision and

acceptance criteria in the requirement set.

Artifacts of the Process

- Conventional s/w projects focused on the sequential development of s/w artifacts:

- Build the requirements

- Construct a design model traceable to the requirements &

- Compile and test the implementation for deployment.

-This process can work for small-scale, purely custom developments in which the design representation,

implementation representation and deployment representation are closely aligned.

- This approach is doesn't work for most of today’s s/w systems why because of having complexity and are

composed of numerous components some are custom, some reused, some commercial products.

THE ARTIFACT SETS

In order to manage the development of a complete software system, we need to gather distinct collections of

information and is organized into artifact sets.

- Set represents a complete aspect of the system where as artifact represents interrelated information that is

developed and reviewed as a single entity.

- The artifacts of the process are organized into five sets:

1) Management 2) Requirements 3) Design

Software process and project management Page 43

4) Implementation 5) Deployment

here the management artifacts capture the information that is necessary to synchronize stakeholder

expectations. Where as the remaining four artifacts are captured rigorous notations that support automated

analysis and browsing.

THE MANAGEMENT SET

It captures the artifacts associated with process planning and execution. These artifacts use ad hoc notation

including text, graphics, or whatever representation is required to capture the “contracts” among,

- project personnel:

project manager, architects, developers, testers, marketers, administrators

- stakeholders: funding authority, user, s/w project manager, organization

manager, regulatory agency & between project personnel and stakeholders Management artifacts

are evaluated, assessed, and measured through a combination of

1) Relevant stakeholder review.

2) Analysis of changes between the current version of the artifact and previous versions.

3) Major milestone demonstrations of the balance among all artifacts.

THE ENGINEERING SETS:

1) REQUIREMENT SET:

- The requirements set is the primary engineering context for evaluating the other three engineering artifact

sets and is the basis for test cases.

- Requirement artifacts are evaluated, assessed, and measured through a combination of

1) Analysis of consistency with the release specifications of the mgmt set.

2) Analysis of consistency between the vision and the requirement models.

3) Mapping against the design, implementation, and deployment sets to

evaluate the consistency and completeness and the semantic balance between information in the different sets.

4) Analysis of changes between the current version of the artifacts and previous versions.

5) Subjective review of other dimensions of quality.

2) DESIGN SET:

- UML notations are used to engineer the design models for the solution.

- It contains various levels of abstraction and enough structural and behavioral information to determine a

bill of materials.

- Design model information can be clearly and, in many cases, automatically translated into a subset of the

implementation and deployment set artifacts.

The design set is evaluated, assessed, and measured through a combination of

1) Analysis of the internal consistency and quality of the design model.

2) Analysis of consistency with the requirements models.

3) Translation into implementation and deployment sets and notations to evaluate the consistency and

completeness and semantic balance between information in the sets.

Software process and project management Page 44

4) Analysis of changes between the current version of the design model and previous versions.

5) Subjective review of other dimensions of quality.

3) IMPLEMENTATION SET:

- The implementation set include source code that represents the tangible implementations of components

and any executables necessary for stand-alone testing of components.

- Executables are the primitive parts that are needed to construct the end product, including custom

components, APIs of commercial components.

- Implementation set artifacts can also be translated into a subset of the deployment set. Implementation

sets are human-readable formats that are evaluated, assessed, and measured through a combination of

1) Analysis of consistency with design models.

2) Translation into deployment set notations to evaluate consistency and

completeness among artifact sets.

3) Execution of stand-alone component test cases that automatically c o m p a r e expected results with

actual results.

4) Analysis of changes b/w the current version of the implementation set and previous versions.

5) Subjective review of other dimensions of quality.

4) DEPLOYMENT SET:

- It includes user deliverables and machine language notations, executable software, and the build scripts,

installation scripts, and executable target-specific data necessary to use the product in its target environment.

Deployment sets are evaluated, assessed, and measured through a combination of

1) Testing against the usage scenarios and quality attributes defined in the requirements set to evaluate the

consistency and completeness and the semantic balance between information in the two sets.

2) Testing the partitioning, replication, and allocation strategies in mapping components of the

implementation set to physical resources of the deployment system.

3) Testing against the defined usage scenarios in the user manual such as installation, user-oriented

dynamic reconfiguration, mainstream usage, and anomaly management.

4) Analysis of changes b/w the current version of the deployment set and previous versions.

5) Subjective review of other dimensions of quality.

Each artifact set uses different notations to capture the relevant artifact.

1) Management set notations (ad hoc text, graphics, use case notation) capture the plans, process,

objectives, and acceptance criteria.

2) Requirement notation (structured text and UML models) capture the

engineering context and the operational concept.

3) Implementation notations (software languages) capture the building blocks of the solution in

humanreadable formats.

4) Deployment notations (executables and data files) capture the solution in machine-readable formats.

Software process and project management Page 45

ARTIFACTS EVOLUTION OVER THE LIFE CYCLE

- Each state of development represents a certain amount of precision in the final system description.

- Early in the lifecycle, precision is low and the representation is generally high.

Eventually, the precision

of representation is high and everything is specified in full detail.

Software process and project management Page 46

- At any point in the lifecycle, the five sets will be in different states of completeness. However, they should

be at compatible levels of detail and reasonably traceable to one another.

- Performing detailed traceability and consistency analyses early in the life cycle

i.e. when precision is low and changes are frequent usually has a low ROI. Inception phase: It mainly

focuses on critical requirements, usually with a secondary focus on an initial deployment view, little

implementation and high- level focus on the design architecture but not on design detail.

Elaboration phase: It include generation of an executable prototype, involves subsets of development in all

four sets. A portion of all four sets must be evolved to some level of completion before an architecture baseline

can be established.

Fig: Life-Cycle evolution of the artifact sets

Construction: Its main focus on design and implementation. In the early stages the main focus is on the depth

of the design artifacts. Later, in construction, realizing the design in source code and individually tested

components. This stage should drive the requirements, design, and implementation sets almost to completion.

Substantial work is also done on the deployment set, at least to test one or a few instances of the

programmed system through alpha or beta releases.

Transition: The main focus is on achieving consistency and completeness of the deployment set in the context

of another set. Residual defects are resolved, and feedback from alpha, beta, and system testing is incorporated.

MANAGEMENT ARTIFACTS:

of WBS is dependent on product management style , organizational culture, custom

performance, financial constraints and several project specific parameters.

• The WBS is the architecture of project plan. It encapsulate change and evolve with appropriatelevel of

details.

• A WBS is simply a hierarchy of elements that decomposes the project plan into discrete work task.

• A WBS provides the following information structure

- A delineation of all significant tasks.

- A clear task decomposition for assignment of responsibilities.

Software process and project management Page 47

- A framework for scheduling ,debugging and expenditure tracking.

-Most systems have first level decomposition subsystem. subsystems are then decomposed into their

components

• Therefore WBS is a driving vehicle for budgeting and collecting cost.

• The structure of cost accountability is a serious project planning constraints.

Business case:

• Managing change is one of the fundamental primitives of an iterative

development process.

• This flexibility increases the content, quality, and number of iterations that a project can achieve within a

given schedule.

• Once software is placed in a controlled baseline, all changes must be formally

tracked and managed.

• Most of the change management activities can be automated by automating data entry and maintaining

change records online.

Engineering Artifacts

Engineering Artifacts are captured in rigorous engineering notations such as UML,

programming languages, or executable machine codes. Three Engineering Artifacts are:

1. Vision Document.

2. Architecture Description.

3. S/W User Manual.

Vision Document

The source for capturing the expectations among stakeholders.

◦ Written from the users’ perspective.

◦ Focus is on essential features of the system, and the acceptable levels of

quality.

◦ Includes the operational concept

Software process and project management Page 48

Pragmatic Artifacts

• Pragmatic Meaning is dealing with things sensibly and realistically in a way that is based on
practical rather than theoretical considerations.

• People want to review information but don’t understand the language of the
artifact.

• People want to review the information but don’t have access to the tools.

• Human readable engineering artifacts should use rigorous

notations that are complete, consistent and used in a self documenting manner.

• Useful documentation is self defining: It is documentation that gets used.

• Paper is tangible(perceptible by touch): electronic artifacts are too easy to change.

Model-Based Software Architectures

INTRODUCTION:

Software architecture is the central design problem of a complex software system in the same way an

architecture is the software system design.

• The ultimate goal of the engineering stage is to converge on a stable architecture baseline.

• Architecture is not a paper document. It is a collection of information across all the engineering sets.

• Architectures are described by extracting the essential information from the design models.

• A model is a relatively independent abstraction of a system.

• A view is a subset of a model that abstracts a specific, relevant perspective.

ARCHITECTURE : A MANAGEMENT PERSPECTIVE

• The most critical and technical product of a software project is its

architecture

• If a software development team is to be successful, the interproject

communications, as captured in software architecture, must be accurate and precise.

From the management point of view, three different aspects of architecture

1. An architecture (the intangible design concept) is the design of software system it includes all engineering

necessary to specify a complete bill of materials. Significant make or buy decisions resolved, and all custom

components are elaborated so that individual component costs and construction/assembly costs can be

determined with confidence.

2. An architecture baseline (the tangible artifacts) is a slice of information across the engineering artifact sets

sufficient to satisfy all stakeholders that the vision (function and quality) can be achieved within the parameters

of the business case (cost, profit, time, technology, people).

3. An architectural description is an organized subset of information extracted from the design set model's.

It explains how the intangible concept is realized in the tangible artifacts. The number of views and level of

detail in each view can vary widely. For example the architecture of the software architecture of a small

development tool.

Software process and project management Page 49

There is a close relationship between software architecture and the modern software development

process because of the following reasons:

1. A stable software architecture is nothing but a project milestone where critical

make/buy decisions should have been resolved. The life-cycle represents a transition from the engineering

stage of a project to the production stage.

2. Architecture representation provide a basis for balancing the trade-offs between the problem space

(requirements and constraints) and the solution space (the operational product).

3. The architecture and process encapsulate many of the important communications among individuals,

teams, organizations, and stakeholders.

4. Poor architecture and immature process are often given as reasons for project failure.

5. In order to proper planning, a mature process, understanding the primary requirements and demonstrable

architecture are important fundamentals.

6. Architecture development and process definition are the intellectual steps that map the problem to a

solution without violating the constraints; they require human innovation and cannot be automated.

ARCHITECTURE: A TECHNICAL PERSPECTIVE

• Software architecture include the structure of software systems, their behavior, and the patterns that

guide these elements, their collaborations, and their composition.

• An architecture framework is defined in terms of views is the abstraction of the UML models in the

design set. Where as architecture view is an abstraction of the design model, include fullbreadth and

depth of information.

Most real-world systems require four types of views:

1) Design: describes architecturally significant structures and functions of the design model.

2) Process: describes concurrency and control thread relationships among the design, component, and

deployment views.

3) Component: describes the structure of the implementation set.

4) Deployment: describes the structure of the deployment set.

The design set include all UML design models describing the solution space.

• The design, process, and use case models provide for visualization of the logical and behavioral

aspect of the design.

• The component model provides for visualization of the implementation set.

Software process and project management Page 50

The deployment model provides for visualization of the deployment set.

1. The use case view describes how the system’s critical use cases are realized by elements of the design

model. It is modeled statistically by using use case diagrams, and dynamically by using any of the UML

behavioral diagrams.

2. The design view describes the architecturally significant elements of the design model. It is modeled

statistically by using class and object diagrams, and dynamically using any of the UML behavioral diagrams.

3. The process view addresses the run-time collaboration issues involved in executing the architecture on a

distributed deployment model, including logical software topology, inter process communication, and state

mgmt. it is modeled statistically using deployment diagrams, and dynamically using any of the UML

behavioral diagrams.

4. The component view describes the architecturally significant elements of the implementation set. It is

modeled statistically using component diagrams, and dynamically using any of the UML behavioral diagrams.

The deployment view addresses the executable realization of the system, including the allocation of logical

processes in the distributed view to physical resources of the deployment network. It is modeled statistically

using deployment diagrams, and dynamically using any of UML behavioral diagrams.

Architecture descriptions take on different forms and styles in different organizations and domains. At any

given time, an architecture requires a subset of artifacts in engineering set.

- An architecture baseline is defined as a balanced subset of information across all sets, where as an

architecture description is completely encapsulated within the design set.

Generally architecture base line include:

1) Requirements 2) Design

3) Implementation 4) Deployment

Software process and project management Page 51

Software process and project management Page 52

Workflows and Checkpoints of process

UNIT-III

Software process workflows, Iteration workflows, Major milestones, Minor milestones,

Periodic status assessments.

Process Planning

Work breakdown structures, Planning guidelines, cost and schedule estimating process,

iteration planning process, Pragmatic planning.

Part –I Work flows and check points of process

Workflows of the Process:

• In most of the cases a process is a sequence of activities why because of easy to understand,

represent, plans and conduct.

• But the simplistic activity sequences are not realistic why because it includes many teams,

making progress on many artifacts that must be synchronized, cross-checked,

homogenized, merged and integrated.

• In order to manage complex software’s the workflow of the software process is to be

changed that is distributed.

• Modern software process avoids the life-cycle phases like inception, elaboration,

construction and transition. It tells only the state of the project rather than a sequence of

activities in each phase.

• The activities of the process are organized in to seven major workflows:

1) Management 2) Environment 3) Requirements

4) Design 5) Implementation 6) Assessment

7) Deployment

• These activities are performed concurrently, with varying levels of effort and emphasis as

a project progresses through the life cycle.

• The management workflow is concerned with three disciplines:

1) Planning 2) Project control 3) Organization

Software process and project management Page 53

Software process and project management Page 54

Software Process Workflows

Previous chapters introduced a life-cycle macroprocess and the fundamental sets of artifacts. The

macroprocess comprises discrete phases and iterations, but not discrete activities. A continuum of

activities occurs in each phase and iteration. The next-level process description is the

microprocesses, or workflows, that produce the artifacts. The term workflow is used to mean a

thread of cohesive and mostly sequential activities. Workflows are mapped to product artifacts as

described in Chapter 6 and to project teams as described in Chapter

11. There are seven top-level workflows:

1. Management workflow: controlling the process and ensuring win conditions for all
stakeholders

2. Environment workflow: automating the process and evolving the maintenance environment

3. Requirements workflow: analyzing the problem space and evolving the requirements
artifacts

4. Design workflow: modeling the solution and evolving the
architecture and design artifacts

5. Implementation workflow: programming the components and
evolving the implementation and deployment artifacts

6. Assessment workflow: assessing the trends in process and product quality

7. Deployment workflow: transitioning the end products to the user

Figure 8-1 illustrates the relative levels of effort expected across the phases in each of the top-

level workflows. It represents one of the key signatures of a modern process framework and

provides a viewpoint from which to discuss several of the key principles introduced in Chapter 4.

1. Architecture-first approach.
Extensive requirements analysis, design, implementation, and assessment activities are

performed before the construction phase, when full-scale implementation is ,the focus. This

early life-cycle focus on implementing and testing the architecture must proceed full-scale

2. Iterative life-cycle process.

“Each phase portrays at least two iterations of each workflow. This default is intended to

be descriptive, not prescriptive. Some projects may require only one iteration in a phase; others

may require several iterations. The point is that the activities and artifacts of any given … core

discipline may require more than one pass to achieve adequate results.”

https://www.gristprojectmanagement.us/software-3/the-principles-of-modern-software-management.html

Software process and project management Page 55

3. Round-trip Engineering

“Raising the environment activities to a first-class … Core Supporting Discipline is critical.

The environment is the tangible embodiment of the project’s process, methods, and notations for

producing the artifacts.”

4. Demonstration-based Approach

Implementation and assessment activities are initiated early in the life cycle, reflecting

the emphasis on constructing executable subsets of the evolving architecture.

Iteration Workflows

• An iteration represents the state of the overall architecture and the complete deliverable
system.

• ฀ An increment represents the current work in progress that will be combined with the
preceding iteration to form the next iteration.

Workflow of an iteration

Example of usage scenario(ATM banking for the week)

□ sally places her bank card into the ATM.

□ sally successfully logs into the ATM using her personal identification
number.

Software process and project management Page 56

□ sally deposits her weekly paycheck of $350 into her savings account.

□ sally pays her phone bill of $75, her electric bill of $145, her

cable bill of $55, and her water bill of $85 from her savings account

□ sally attempts to withdraw $100 from her savings account forthe weekend but
discovers that she has insufficient funds

□ sally withdraws $40 and gets her card back

Iteration emphasis across life cycle

Iteration Contents

• Management is concerned with the content of the iterations, assigning work, and the
contents of anticipated releases.

• Environment is concerned primarily with maintaining the software change database –
tracking, prioritizing, addressing any changes that arise.

Requirements: is concerned with looking carefully at the baseline plan, architecture, and

requirement set artifacts needed to fully expand the use cases that need to be demonstrated at

the end of this iteration – as well as their evaluation criteria.

Design: is concerned with developing the design model and test model by evolving the baseline

architecture and design set artifacts against the evaluation criteria for a specific iteration; Also

need to update the design set artifacts in response to the activities within this iteration

Implementation: addresses developing (from scratch), customizing, or acquiring (purchase,

reuse) new components and to test and integrate these components into to current architectural

baseline.

Assessment: concerned with evaluating the results of each iteration to insure compliance with

evaluation criteria and to identify rework needed before deployment of this release or allocated

to the next iteration; also, assess the results for this iteration so as to improve the next iteration’s

procedure.

Deployment: concerned with transmitting the release either internally or to an external
organization for exercise.

CHECKPOINTS OF THE PROCESS

Check pointing is a technique to add fault tolerance into computing systems. It basically consists

of saving a snapshot of the application's state, so that it can restart from that point in case of failure.

This is particularly important for long running application that is executed in vulnerable computing

system.

- It is important to place visible milestones in the life cycle in order to discuss the progress of
the project by the stakeholders and also to achieve,

1) Synchronize stakeholder expectations and achieve agreement among the requirements, the
design, and the plan perspectives.

2) Synchronize related artifacts into a consistent and balanced state.

Software process and project management Page 57

3) Identify the important risks, issues, and out-of-tolerance conditions.

4) Perform a global review for the whole life cycle, not just the current situation of an
individual perspective or intermediate product.

Three sequence of project checkpoints are used to synchronize

stakeholder expectations throughout the lifecycle:

1) Major milestones 2) Minor milestones 3) Status assessments

- The most important major milestone is usually the event that transitions the project from the
elaboration phase into the construction phase.

- The format and content of minor milestones are highly dependent on the project and the
organizational culture.

- Periodic status assessments are important for focusing continuous attention on the evolving
health of the project and its dynamic priorities.

Three types of joint management reviews are conducted throughout the

process:

1) Major milestones: These are the system wide events are held at the end of each

development phase.

They provide visibility to system wide issues.

2) Minor milestones: These are the iteration-focused events are conducted to review the
content of an iteration in detail and to authorize continued work.

3) Status assessments: These are periodic events provide management with frequent and
regular insight into the progress being made.

- An iteration represents a cycle of activities. Each of the lifecycle phases undergoes one or more
iterations.

Minor milestones capture two artifacts: a release specification and a release description. Major

milestones at the end of each phase use formal, stakeholderapprovedevaluation criteria and release

descriptions; minor milestones use informal, development-team-controlled versions of these

artifacts.

- Most projects should establish all four major milestones. Only in exceptional case you add other
major milestones or operate with fewer. For simpler projects, very few or no minor milestones
may be necessary to manage intermediate results, and the number of status assessments may be
infrequent.

MAJOR MILESTONES:

In an iterative model, the major milestones are used to achieve concurrence among all

stakeholders on the current state of the project. Different stakeholders have different concerns:

Customers: schedule and budget estimates, feasibility, risk assessment, requirements

understanding, progress, product line compatibility.

Users: consistency with requirements and usage scenarios, potential for accommodatinggrowth,

Software process and project management Page 58

quality attributes. Architects and systems

engineers:product line compatibility, requirements changes, tradeoff analyses,
completeness

Developers: Sufficiency of requirements detail and usage scenario descriptions, frameworks for

component selection or development, resolution of development risk, product line compatibility,

sufficiency of the development environment.

Maintainers: sufficiency of product and documentation artifacts, understandability,
interoperability. with existing systems, sufficiency of maintenance environment.

59 Software process and project management Page

Others: regulatory agencies, independent verification and validation contractors, venture capital

investors, subcontractors, associate contractors, and sales andmarketing teams.

Life-Cycle Objective Milestone: These milestones occur at the end of the inception phase. The

goal is to present to all stakeholders a recommendation on how to proceed with development,

including a plan, estimated cost and schedule, and expected benefits and cost savings.

Life- Cycle Architecture Milestone: These milestones occur at the end of the elaboration phase.

Primary goal is to demonstrate an executable architecture to all stakeholders. A more detailed plan

for the construction phase is presented for approval. Critical issues relative to requirements and

the operational concept are addressed.

Initial Operational Capability Milestone: These milestones occur late in theconstruction phase.

The goals are to assess the readiness of the software to begin the transition into customer / user

sites and to authorize the start of acceptance testing.

Product Release Milestone: Occur at the end of the transition phase. The goal is to assess the

completion of the software and its transition to the support organization, if any. The results of

acceptance testing are reviewed, and all open issues are addressed and software quality metrics are

reviewed to determine whether quality is sufficient for transition to the support organization.

MINOR MILESTONES:

The number of iteration-specific, informal milestones needed depends on the content and length

of the iteration. Iterations which have one- month to six-month duration have only two milestones

are needed: the iteration readiness review and iteration assessment review. For longer iterations

some other intermediate review points are added. All iterations are not created equal.

Iteration takes different forms

and priorities, depending on where the project is in the life cycle. Early iterations focus on analysis

and design. Later iterations focus on completeness, consistency, usability and change management.

Iteration Readiness Review: This informal milestone is conducted at the start of each iteration to

review the detailed iteration plan and the evaluation criteria that have been allocated to this

iteration.

Iteration Assessment Review: This informal milestone is conducted at the end of each iteration

to assess the degree to which the iteration achieved its objectives and to review iteration results,

test results, to determine amount of rework to be done, to review impact of the iteration results on

the plan for subsequent iterations.

Software process and project management Page 60

PERIODIC STATUS ASSESSMENTS:

- These are management reviews conducted at regular intervals (monthly, quarterly) to address
progress and quality of project and maintain open communication among all stakeholders.

The main objective of these assessments is to synchronize all stakeholders expectations and also

serve as project snapshots. Also provide,

1) A mechanism for openly addressing, communicating, and resolving management issues,
technical issues, and project risks.

2) A mechanism for broadcast process, progress, quality trends, practices, and experience
information to and from all stakeholders in an open forum.

3) Objective data derived directly from on-going activities and evolving product configurations.

Iterative Process Planning:

- Like software development, project planning is also an iterative process.

- Like software, plan is also an intangible one. Plans have an engineering stage,during which the
plan is developed, and a production stage, where the plan is executed.

Part-II Process Planning

Work breakdown structures

- Work breakdown structure is the “architecture” of the project plan and also an architecture for
financial plan.

- A project is said to be in success, if we maintain good work breakdown structure and its
synchronization with the process frame work.

- A WBS is simply a hierarchy of elements that decomposes the project plan into discrete work
tasks and it provides:

1) A pictorial description of all significant work.

2) A clear task decomposition for assignment of responsibilities.

3) A framework for scheduling, budgeting, and expenditure tracking.

1) First-level elements: WBS elements are the workflows and are allocated to single team;
provide the structure for the purpose of planning and comparison with the other projects.

2) Second-level elements: elements are defined for each phase of the life cycle.These elements
allow the faithfulness of the plan to evolve more naturally with the level of understanding of the
requirements and architecture, and the risks therein.

Software process and project management Page 61

3) Third-level elements:

- These elements are defined for the focus of activities that produce the artifacts of each phase.

- These elements may be the lowest level in the hierarchy that collects the cost of discrete artifacts
for a given phase, or they may be decomposed further into several lower level activities that, taken
together, produce a single artifact.

PLANNING GUIDELINES:

- Software projects span a broad range of application domains.

- It is valuable but risky to make specific planning suggestions
independent of project context.

Software process and project management Page 62

- Planning provides a skeleton of the project from which the
management people

can decide the starting point of the project.

- In order to proper plan it is necessary to capture the planning guidelines from most expertise
and experience people.

Software process and project management Page 63

- Project-independent planning advice is also risky. Adopting the planning guidelines blindly
without being adapted to specific project circumstances is risk.

The above table provides default allocation for budgeted costs of each first-level WBS element.

- Sometimes these values may vary across projects but this allocation provides a good benchmark
for assessing the plan by understanding the foundation for deviations from these guidelines.

- It is cost allocation table not the effort allocation.

The cost and schedule estimating process

Project plans need to be derived from two perspectives:

1) Forward-looking, top-down approach: It starts with an understanding requirements and
constraints, derives a macro-level budget and schedule, then decomposes these elements into lower
level budgets and intermediate milestones.

From this perspective the following planning sequences would occur:

a) The software project manager develops a characterization of the overall size, process,
environment, people, and quality required for the project.

b) A macro-level estimate of the total effort and schedule is developed using a software cost
estimation model.

c) The software project manager partitions the estimate for the effort into a top level WBS using
guidelines (table 10-1) and also partitions the schedule into major milestone dates and partition the
effort into a staffing profile using guidelines

(table 10-2).

d) Subproject managers are given the responsibility for decomposing each of the WBS elements
into lower levels using their tip-level allocation, staffing profile, and major milestone dates as
constraints.

2) Backward-looking, bottom-up approach: We start with the end in mind, analyze the micro-
level budgets and schedules, then sum all these elements into higher level budgets and intermediate
milestones. This approach tends to define the WBS from the lowest levels upward. From this
perspective, the following planning sequences would occur:

a) The lowest level WBS elements are elaborated into detailed tasks. These estimates tend to
incorporate the project-specific parameters in an exaggerated way.

b) Estimates are combined and integrated into higher level budgets and milestones.

c) Comparisons are made with the top-down budgets and schedule milestones.

Gross differences are assessed and adjustments are made in order to converge on agreement
between the topdown and bottom-up estimates.

- These two planning approaches should be used together, in balance, throughout the life cycle of
the project.

- During the engineering stage, the top-down perspective will dominate because there is usually
not enough depth of understanding nor stability in the detailed task sequences to perform credible
bottomup planning.

Software process and project management Page 64

- During the production stage, there should be enough precedent experience and

planning fidelity that the bottom-up planning perspective will dominate.

- By then, the top-down approach should be well tuned to the project specific parameters, so it

should be used more as a global assessment technique.

The iteration planning process

Planning is concerned with defining the actual sequence of intermediate results. An Evolutionary

build plan is important because there are always adjustments in build content and schedule as early

conjecture evolves into well-understood project circumstances.

Iteration is used to mean a complete synchronization across the project, with a well-orchestrated

global assessment of the entire project baseline. Inception iterations: The early prototyping

activities integrate the foundation components of candidate architecture

 and provide an executable framework for elaborating the critical use cases

of the system. This framework includes existing components, commercial

components, and custom prototypes

sufficient to demonstrate candidate architecture and sufficient requirements understanding to

establish a credible business case, vision, and software development plan.

Elaboration iterations: These iterations result in architecture, including a complete

framework and infrastructure for execution. Upon completion of the architecture iteration, a few

critical use cases should be demonstrable:

(1) initializing the architecture, (2) injecting a scenario to drive the worst-case data processing

flow through the system (for example, the peak transaction throughput or peak load scenario), and

(3) injecting a scenario to drive the worst-case control flow through the system (for example,

orchestrating the fault-tolerance use cases).

Construction iterations: Most projects require at least two major construction iterations: an

alpha release and a beta release.

Transition iterations: Most projects use a single iteration to transition a beta release into the

final product. The general guideline is that most projects will use between four and nine iterations.

The typical project would have the following six-iteration profile:

one iteration in inception: an architecture prototype

Two iterations in elaboration: architecture prototype and architecture baseline

Two iterations in construction: alpha and beta releases one iteration in transition: product release

Software process and project management Page 65

A very large or unprecedented project with many stakeholders may require additional inception

iteration and two additional iterations in construction, for a total of nine iterations.

Even though good planning is more dynamic in an iterative process,

doing it accurately is far easier. While executing iteration N of any phase, the software project

manager must be monitoring and controlling against a plan that was initiated in iteration N - 1 and

must be planning iteration N + 1. The art of good project· management is to make trade- offs in the

current iteration plan and the next iteration plan based on

objective results in the current Iteration and previous iterations A side from bad architectures and

misunderstood requirements, inadequate planning (and subsequent bad management) is one of the

most common reasons for project failures. Conversely, the success of every successful project can

be attributed in part to good planning.

Pragmatic planning

Software process and project management Page 66

Project Organizations

UNIT-IV

Line-of- business organizations, project organizations, evolution of organizations, process automation.

Project Control and process instrumentation

The seven core metrics, management indicators, quality indicators, life-cycle expectations, Pragmatic

software metrics, and metrics automation.

Part-1 Project Organizations and Responsibilities

Project Organizations and Responsibilities

Organizations engaged in software Line-of-Business need to support projects with the infrastructure

necessary to use a common process.

Project organizations need to allocate artifacts & responsibilities across project team to ensure a

balance of global (architecture) & local (component) concerns.

The organization must evolve with the WBS & Life cycle concerns. Software lines of business &

product teams have different motivation. Software lines of business are motivated by return of

investment (ROI),

new business discriminators, market diversification &profitability.

Project teams are motivated by the cost, Schedule &quality of specific deliverables

1) Line-Of-Business Organizations:

The main features of default organization are as follows:

• Responsibility for process definition & maintenance is specific to a cohesive

line of business.

• Responsibility for process automation is an organizational role & isequal in

importance to the process definition role.

• Organizational role may be fulfilled by a single individual or several different teams. Fig: Default roles

in a software Line-of-Business Organization. Software Engineering Process Authority (SEPA)

The SEPA facilities the exchange of information & process guidance both to & from project practitioners

This role is accountable to General Manager for maintaining a current

assessment

of the organization’s process maturity & its plan for future improvement

Project Review Authority (PRA)

The PRA is the single individual responsible for ensuring that a software project

Software process and project management Page 67

complies with all organizational & business unit software policies, practices & standards A

software Project Manager is responsible for meeting the

requirements of a contract or some other project compliance standard Software Engineering

Environment Authority(SEEA)

The SEEA is responsible for automating the organization’s process,

maintaining the organization’s standard environment, Training projects to use the Environment

&maintaining organization-wide reusable assets The SEEA role is necessary to achieve a significant ROI

for common process.

Infrastructure

An organization’s infrastructure provides human resources support, project- independent research &

development, &other capital software engineering assets.

2) Project organizations:

Artifacts Activities

• Business case Customer interface, PRA interface

• Software development plan Planning, monitoring

• Status assessments Risk management

• Software process definition

• Process improvement

Figure 11-2. Default project organization and responsibilities

Software Management

Software Development Software Architecture Software Assessment System engineering

Administration

• The above figure shows a default project organization and maps project-level roles and

responsibilities.

• The main features of the default organization are as follows:

• The project management team is an active participant, responsible for producing as well as

managing.

• The architecture team is responsible for real artifacts and for the integration of

components, not just for staff functions.

• The development team owns the component construction and maintenance activities.

• The assessment team is separate from development.

Software process and project management Page 68

• Quality is everyone’s into all activities and checkpoints.

• Each team takes responsibility for a different quality perspective.

3) EVOLUTION OF ORGANIZATIONS:

Transition Construction

Inception:

Software management: 50%

Software Architecture: 20%

Software development: 20% Software

Assessment

(measurement/evaluation):10%

Elaboration:

Software management: 10%

Software Architecture: 50%

Software development: 20% Software

Assessment

(measurement/evaluation):20%

Construction:

Software management: 10%

Software Architecture: 10%

Software development: 50% Software

Assessment

(measurement/evaluation):30%

Transition:

Software management: 10%

Software Architecture: 5%

Software development: 35% Software

Assessment

(measurement/evaluation):50% The

Process Automation

Introductory Remarks:

The environment must be the first-class artifact of the process.

Process automation& change management is critical to an iterative process. If the change is expensive

then the development organization will resist it.

Round-trip engineering& integrated environments promote change freedom & effective evolution of

technical artifacts.

Metric automation is crucial to effective project control.

External stakeholders need access to environment resources to improve interaction with the

development team & add value to the process.

The three levels of process which requires a certain degree of process automation for the corresponding

process to be carried out efficiently.

Software process and project management Page 69

Software process and project management Page 70

MANAGEMENT INDICATORS:

1. There are three fundamental sets of management metrics: technical progress, financial status, and

staffing progress

2. By examining these perspectives, management can generally assess whether a

project is on budget and on schedule

3. Most managers know their resource expenditures in terms of costsand

schedule. The problem is to assess how much technical progress has been made.

4. Following three are management indicators:

STAFFING A N D TEAM DYNAMICS:

1. Tracking actual versus planned staffing is a necessary is well-understood management metric.

2. There is one other important management indicator, the relationship between attrition and

additions.

3. Increases in new staff can slow overall project progress as new people consume the more

productive time.

4. Low attrition of good people is a sign of success.

5. If progress motivation is not there, good engineers will migrate elsewhere.

6. An increase in unplanned attrition-namely, people leaving a project prematurely-is one of the

most obvious indicators that a project is destined for trouble.

7. The causes of such attrition can vary, but they are usually personnel dissatisfaction with

management methods, lack of teamwork, or probability of failure in meeting the planned

objectives.

Software process and project management Page 71

BREAKAGE AND MODULARITY:

Breakage is defined as the average extent of change, which is the amount of software that needs

rework.

1. Modularity is the average breakage trend over time.

2. For a healthy project, the trend expectation is decreasing or stable. (Figure 13

3. This indicator provides insight into the benign (not harmful) or malignant (harmful) character of

software change.

4. In a mature iterative development process, earlier changes are expected to result in more

scrap than later changes.

5. Breakage trends that are increasing with time clearly indicate that product maintainability is

REWORK AND

1. Rework is defined as the average c o s t of change.

2. Which is the effort t o analyze, resolve, and retest all changes to software b a s e l i n e s .

3. Adaptability is defined as the rework trend over time.

4. For a healthy project, the trend expectation is decreasing or stable.

5. Not all changes are treated equal. Some changes can be made in a staff-hour, while others take

staff-weeks.

6. This metric provides insight into rework measurement.

7. In a mature i t e r a t i v e d e v e l o p me n t process, ear l ie r c h an ge s a r e expected to require

more rework than later changes.

8. Rework trends that are increasing with time clearly indicate that product maintainability is

difficult.

1. Software errors can be categorized into two types: deterministic and nondeterministic. Physicists

would characterize these as Bohr-bugs and

Heisen-bugs, r e s p e c t i v e l y .

2. Bohr-bugs represent a class of errors th at always result when the software i s used in a same way.

These errors are predominantly caused by coding errors, and changes are typically isolated to a single

component.

1. Heisen-bugs a r e software faults that are coincidental situation. These errors are almost always

design errors and typically are not repeatable even when the software is used in the same apparent way.

2. Conventional software programs executing a single program on a single processor typically

contained only Bohr-bugs.

Software process and project management Page 72

3. Modern, distributed systems with numerous interoperating components executing across a network of

processors are vulnerable to Heisen-bugs, which are far more complicated to detect, analyze, and resolve.

4. The best way to mature a software product is to establish an initial test infrastructure that allows

execution of test early in the life cycle.

Software process and project management Page 73

Write note on lifecycle expectations.(13.3 table)

There is no mathematical evidence for using the seven core metrics. However, there were specific reasons

for selecting them:

•The quality indicators are derived from the activity of ongoingprocess.

• They provide insight into the waste generated by the process. Scrap and rework metrics of manufacturing

processes.

•Rather than focus on the value, they explicitly concentrate on the trends or changes with respect to time.

• The combination of insight from the current value and the current trend provides sufficient information for

management.

Write note on pragmatic software metrics

Basic characteristics of good metric are as follows:

1. It is considered me an in gf ul by the customer, manager, and performer. If any one of these

stakeholders does not see the metric as meaningful, it will not be used.

2. It demonstrates quantifiable correlation between process perturbations (problems) and business p e

r f o r ma n c e .

3. It is objective and unambiguously defined. Objectivity should translate into some form of

numeric representation (such as numbers, percentages, ratios) as opposed to textual representations

(such as excellent, good, fair, poor).

Ambiguity is minimized through well-understood units of measurement (such as staff-month, SLOC,

change, function point, class, scenario, and requirement),

4. It displays trends. This is an important characteristic. Understanding the change in a metric's value

with respect to time, subsequent (later) projects, subsequent r e l e a s e s , and so forth is an extremely

important perspective.

. 5. It is a natural by-product of the process. The metric does not introduce new artifacts or overhead

activities; it is derived directly from the mainstream engineering and management workflows.

6. It is supported by automation.

Software process and project management Page 74

Experience has demonstrated that the most successful metrics are those that are collected and

reported b y automated tools.

Following examples shows why the values of metrics should be interpreted correctly.

• A low number of change requests to a software baseline may mean that the software is mature and error-

free, or it may mean that the test team is on vacation.

• A software change order that has been open for a long time may mean that the problem was simple

to diagnose and the solution required large rework, or it may mean that a problem was very time-

consuming to diagnose and the solution required a simple change to a single line of code.

• A large increase in personnel in a given month may cause progress to increase proportionally

if they are trained people who are productive from the outset. It may cause progress to down if they

are untrained new hires who demand extensive support from productive people to get up to speed.

1. There are many opportunities to automate the project control activities of a software

project.

2. To analyze the data, software project control panel (SPCP) that maintains an on-line version of

the status of s/w provides the key advantage.

3. This concept was first recommended by the Airlie Software Council [Brown,1996], using

the "dashboard”.(displaying metrics /score)

4. The idea is to provide a display panel that integrates d a t a from multiple sources to show the

current s tatu s of the project.

5. For example, the software project manager would want to see a display with overall project

values, a test manager may want to see a display focused on metrics specific to an upcoming

beta release, and development managers may be interested only in data concerning the

subsystems and components for which they are responsible.

6. The panel can support standard features such as warning lights, thresholds, variable scales,

digital formats, and analog formats to present an overview of the current situation.

7. This automation support can improve m a n a g e m e n t insight i n t o p r o gr e s s a n d quality

trends and improve the acceptance of metrics by the engineering team.

To implement a complete SPCP, it is necessary to define and develop the following

• Metrics primitives: indicators, trends, comparisons, and progressions

• A graphical u s e r interface: GUI support for a software p r o j e c t m a n a g e r role and flexibility to

support other roles.

• Metrics collection agents: data extraction from the environment tools.

• Metrics data management server: stores the data.

• metrics definitions: actual metrics presentations for requirements progress (extracted from

requirements set artifacts), design progress (extracted from design set artifacts), implementation

progress (extracted from implementation set artifacts), assessment progress (extracted from deployment

set artifacts), and other progress dimensions (extracted from manual sources, financial management

systems, management artifacts, etc.)

• Actors: typically, the monitor and the administrator.

Software process and project management Page 75

What are four graphical objects of top level display

1. Project activity status. The graphical o b j e c t in the upper left provides an overview of the status of

the top-level WBS elements. The seven elements could be coded red, yellow, and green to reflect

the current e a r n e d v a l u e status. (In Figure 13-10, they are coded with white and shades of gray.)

For example, green would represent ahead of plan, yellow would indicate within 10% of plan,

and red would identify elements that have a greater than 10% cost or schedule variance.

2. Technical artifact status . The graphical ob j e ct in the upper right provides an overview of the status

of technical artifacts. The Req light would display current state of requirements specifications. The

Des light would do the same for the design models, the Imp light for the source code baseline, and the

Dep light for the test program.

3. Milestone progress. The graphical object in the lower left provides a progress assessment of the

achievement of milestones against plan.

4. Action item progress. The graphical object in the lower right provides a different perspective of

progress, showing t h e current n u m b e r o f open and closed issues.

Software process and project management Page 75

UNIT V

CCPDS-R Case Study and Future Software Project Management Practices

Modern Project Profiles, Next-Generation software Economics, Modern Process Transitions.

CCPDS-R Case Study and Future Software Project Management Practices

MODERN PROJECT PROFILES

Continuous Integration

In the iterative development process, firstly, the overall architecture of the project is created and

then all the integration steps are evaluated to identify and eliminate the design errors. This

approach eliminates problems such as downstream integration, late patches and shoe-horned

software fixes by implementing sequential or continuous integration rather than implementing

large-scale integration during the project completion.

▪ Moreover, it produces feasible and a manageable design by delaying the ‘design breakage’

to the engineering phase, where they can be efficiently resolved. This can be one by making

use of project demonstrations which forces integration into the design phase.

▪ With the help of this continuous integration incorporated in the iterative development

process, the quality tradeoffs are better understood and the system features such as system

performance, fault tolerance and maintainability are clearly visible even before the

completion of the project.

▪ In the modern project profile, the distribution of cost among various workflows or project

is completely different from that of traditional project profile as shown below:

 Software Engineering Workflows Conventional Process Expenditures Modern process

Ex

Management 5% 10%

Environment 5% 10%

Requirements 5% 10%

Design 10% 15%

Implementation 30% 25%

Assessment 40% 25%

Deployment 5% 5%

As shown in the table, the modern projects spend only 25% of their budget for integration and

Assessment activities whereas; traditional projects spend almost 40% of their total budget for these

activities. This is because, the traditional project involve inefficient large-scale integration and late

identification of design issues.

Early Risk Resolution

▪ In the project development lifecycle, the engineering phase concentrates on identification

and elimination of the risks associated with the resource commitments just before the

production stage. The traditional projects involve, the solving of the simpler steps first

and then goes to the complicated steps, as a result the progress will be visibly good,

whereas, the modern projects focuses on 20% of the significant requirements, use cases,

components and risk and hence they occasionally have simpler steps.

Software process and project management Page 76

Software process and project management Page 77

▪ To obtain a useful perspective of risk management, the project life cycle has to be applied

on the principles of software management. The following are the 80:20 principles.

▪ The 80% of Engineering is utilized by 20% of the requirements.

▪ Before selecting any of the resources, try to completely understand all the requirement

because irrelevant resource selection (i.e., resources selected based on prediction) may

yield severe problems.

▪ 80% of the software cost is utilized by 20% of the components

▪ Firstly, the cost-critical components must be elaborated which forces the project to focus

more on controlling the cost.

▪ 80% of the bugs occur because of 20% of the components

▪ Firstly, the reliability-critical components must be elaborated which give sufficient time

for assessment activities like integration and testing, in order to achieve the desired level

of maturity.

▪ 80% of the software scrap and rework is due to 20% if the changes.

▪ The change-critical components r elaborated first so that the changes that have more impact

occur when the project is matured.

▪ 80% of the resource consumption is due to 20% of the components.

▪ Performance critical components are elaborated first so that, the trade-offs with reliability;

changeability and cost-consumption can be solved as early as possible.

▪ 80% of the project progress is carried-out by 20% of the people

▪ It is important that planning and designing team should consist of best processionals

because the entire success of the project depends upon a good plan and architecture.

▪ In the project life cycle the requirements and design are given the first and the second

preference respectively. The third preference is given to the traceability between the

requirement and the design components these preferences are given in order to make the

design structure evolve into an organization so it parallels the structure of the requirements

organization.

Software process and project management Page 78

▪ Modern architecture finds it difficult to trace the requirements because of the following

reasons.

▪ Usage of Commercial components

▪ Usage of legacy components

▪ Usage of distributed resources

▪ Usage of object oriented methods.

▪ Moreover, the complex relationships such as one-one, many-one, one-many, conditional,

time-based and state based exists the requirements statement and the design elements.

Software process and project management Page 79

As shown in the above figure, the top category system requirements are kept as the vision

whereas, those with the lower category are evaluated. The motive behind theses artifacts

is to gain fidelity with respect to the progress in the project lifecycle. This serves as a

significant different from the traditional approach because, in traditional approach the

fidelity is predicted early in the project life cycle.

8.1.4 Teamwork among stakeholders

▪ Most of the characteristics of the classic development process worsen the stakeholder

Software process and project management Page 80

relationship s which in turn makes the balancing of requirement product attributes and plans

difficult. An iterative process which has a good relationship between the stakeholders

mainly focuses on objective understanding by each and every individual stakeholder. This

process needs highly skilled customers, users and monitors which have experience in both

the application as well as software. Moreover, this process requires an organization whose

focus is on producing a quality product and achieves customer satisfaction.

▪ The table below shows the tangible results of major milestones in a modern process.

▪ From the above table, it can be observed that the progress of the project is not possible

unless all the demonstration objectives are satisfied. This statement does not present

the renegotiation of objectives, even when the demonstration results allow the further

processing of tradeoffs present in the requirement, design, plans and technology.

▪ Modern iterative process that rely on the results of the demonstration need al its

stakeholders to be well-educated and with a g good analytical ability so as to distinguish

between the obviously negative results and the real progress visible. For example, an early

determined design error can be treated as a positive progress instead to a major issue.

Principles of Software Management

▪ Software management basically relies on the following principles, they are,

1. Process must be based on architecture-first approach

If the architecture is focused at the initial stage, then there will be a good foundation for

almost 20% of the significant stuff that are responsible for the overall success of the project.

This stuff include the requirements, components use cases, risks and errors. In other words,

if the components that are being involved in the architecture are well known then the

expenditure causes by scrap and rework will be comparatively less.

2. Develop an iterative life-cycle process that identifies the risks at an early stage

An iterative process supports a dynamic planning framework that facilitates the risk

management predictable performance moreover, if the risks are resolved earlier, the

predictability will be more and the scrap and rework expenses will be reduced.

Software process and project management Page 81

3. After the design methods in-order to highlight components-based development.

The quantity of the human generated source code and the customized development can

be reduced by concentrating on individual components rather than individual lines- of-

code. The complexity of software is directly proportional to the number of artifacts it

contains that is, if the solution is smaller then the complexity associated with its

management is less.

4. Create a change management Environment

Highly-controlled baselines are needed to compensate the changes caused by various

teams that concurrently work on the shared artifacts.

5. Improve change freedom with the help of automated tools that support round-trip

engineering.

The roundtrip-engineering is an environment that enables the automation and

synchronization of engineering information into various formats. The engineering

information usually consists requirement specification, source code, design models test

cases and executable code. The automation of this information allows the teams to focus

more on engineering rather than dealing with over head involved.

Design artifacts must be captured in model based notation.

The design artifacts that are modeled using a model based notation like UML, are rich

in graphics and texture. These modeled artifacts facilitate the following tasks.

▪ Complexity control

▪ Objective fulfillment

▪ Performing automated analysis

7. Process must be implemented or obtaining objective quality control and estimation

of progress.

The progress in the lifecycle as well as the quality of intermediately products must be

estimated and incorporated into the process. This can be done with the help of well defined

estimation mechanism that are directly derived from the emerging artifacts. These

mechanisms provide detailed information about trends and correlation with requirements.

8. Implement a Demonstration-based Approach for Estimation of intermediately

Artifacts

Software process and project management Page 82

This approach involves giving demonstration on different scenarios. It facilitates earl

integration and better understanding of design trade-offs. Moreover, it eliminates

architectural defects earlier in the lifecycle. The intermediately results of this approach are

definitive.

The Points Increments and generations must be made based on the evolving levels of

detail

Here, the ‘levels of detail’ refers to the level of understanding requirements and

architecture. The requirements, iteration content, implementations and acceptance testing

can be organized using cohesive usage scenarios.

10. Develop a configuration process that should be economically scalable

The process framework applied must be suitable for variety of applications. The process

must make use of processing spirit, automation, architectural patterns and components such

that it is economical and yield investment benefits.

NEXT GENERATION SOFTWARE ECONOMICS

Next generation software cost models

▪ In comparison to the current generation software cost modes, the next generation software

cost models should perform the architecture engineering and application production

separately. The cost associated with designing, building, testing and maintaining the

architecture is defined in terms of scale, quality, process, technology and the team

employed.

▪ After obtaining the stable architecture, the cost of the production is an exponential function

of size, quality and complexity involved.

▪ The architecture stage cost model should reflect certain diseconomy of scale (exponent less

than 1.0) because it is based on research and development-oriented concerns. Whereas the

production stage cost model should reflect economy of scale (exponent less than 1.0) for

production of commodities.

▪ The next generation software cost models should be designed in a way that, they can assess

larger architectures with economy of scale. Thus, the process exponent will be less than 1.0

at the time of production because large systems have more automated proves components

and architectures which are easily reusable.

▪ The next generation cost model developed on the basis of architecture-first approach is

shown below.

Software process and project management Page 83

▪ A Plan with less fidelity and risk resolution

▪ It is technology or schedule-based

▪ It has contracts with risk sharing

▪ Team size is small but with experienced professionals.

▪ The architecture team, consists of small number of software engineers

▪ The application team consists of small number of domain engineers.

▪ The output will be an executable architecture, production and requirements

▪ The focus of the architectural engineering will be on design and integration of entities as

well as host development environment.

▪ It contains two phases they are inspection and elaboration.

• At Application production stage

• A plan with high fidelity and lower risk

• It is cost-based

• It has fixed-priced contracts

• Team size is large and diverse as needed.

• Architecture team consists of a small number of software engineers.

Software process and project management Page 84

• The Application team may have nay number of domain engineers.

• The output will be a function which is deliverable and useful, tested

baseline and warranted quality.

• The focus of the application production will be on implementing testing

and maintaining target technology.

3. MODERN PROCESS TRANSITIONS

Indications of a successful project transition to a modern culture

Several indicators are available that can be observed in order to distinguish projects that have made a

genuine cultural transition from projects that only pretends. The following are some rough indicators

available.

The lower-level managers and the middle level managers should participate in the project

development

Any organization which has an employee count less than or equal to 25 does not need to have pure

managers. The responsibility of the managers in this type of organization will be similar to that of a

project manager. Pure managers are needed when personal resources exceed 25. Firstly, these

managers understand the status of the project them, develop the plans and estimate the results. The

manager should participate in developing the plans. This transition affects the software project

managers.

Tangible design and requirements

The traditional processes utilize tons of paper in order to generate the documents relevant to the desired

project. Even the significant milestones of a project are expressed via documents. Thus, the traditional

process spends most of their crucial time on document preparation instead of performing software

development activities.

An iterative process involves the construction of systems that describe the architecture, negotiates the

significant requirements, identifies and resolves the

Software process and project management Page 85

risks etc. These milestones will be focused by all the stakeholders because they show progressive

deliveries of important functionalities instead of documental descriptions about the project.

Engineering teams will accept this transition of environment from to less document-driven while

conventional monitors will refuse this transition.

Assertive Demonstrations are prioritized

The design errors are exposed by carrying-out demonstrations in the early stages of the life cycle. The

stake holders should not over-react to these design errors because overemphasis of design errors will

discourage the development organizations in producing the ambitious future iterating. This does not

mean that stakeholders should bare all these errors. Infact, the stakeholders must follow all the

significant steps needed for resolving these issues because these errors will sometimes lead to serious

down-fall in the project.

This transition will unmark all the engineering or process issues so, it is mostly refused by management

team, and widely accepted by users, customers and the engineering team.

The performance of the project can be determined earlier in the life cycle.

The success and failure of any project depends on the planning and architectural phases of life cycle

so, these phases must employ high-skilled professionals. However, the remaining phases may work

well an average team.

Earlier increments will be adolescent

The development organizations must ensure that customers and users should not expect to have good

or reliable deliveries at the initial stages. This can be done by demonstration of flexible benefits in

successive increments. The demonstration is similar to that of documentation but involves measuring

of changes, fixes and upgrades based on the objectives so as to highlight the process quality and future

environments.

Artifacts tend to be insignificant at the early stages but proves to be the most significant in

the later stages

The details of the artifacts should not be considered unless a stable and a useful baseline is obtained.

This transition is accepted by the development team while the conventional contract monitors refuse

this transition.

Identifying and Resolving of real issues is done in a systematic order

The requirements and designs of any successful project arguments along with the continuous

negotiations and trade-offs. The difference between real and apparent issued of a successful project

can easily be determined. This transition may affect any team of stakeholders.

Software process and project management Page 86

Everyone should focus on quality assurance

The software project manager should ensure that quality assurance is integrated in every aspect of

project that is it should be integrated into every individuals role, every artifact, and every activity

performed etc. There are some organizations which maintains a separate group of individuals know as

quality assurance team, this team would perform inspections, meeting and checklist in order to measure

quality assurance. However, this transition involves replacing of separate quality assurance team into

an organizational teamwork with mature process, common objectives and common incentives. So, this

transition is supported by engineering teams and avoided by quality assurance team and conventional

managers.

CASE STUDIES:

COCOMO MODEL

The best known and most transparent cost model COCOMO (Constructive costmodel) was

developed by Boehm, which was derived from the analysis of 63 software projects. Boehm

proposed three levels of the model: basic, intermediate and detailed. COCOMO focuses mainly

upon the intermediate mode.

The COCOMO model is based on the relationships between:

Equation 1:- Development effort is related to system size
MM = a.KDSI.b

Equation 2:- Effort and development time

TDEV = c.MM.d

where MM is the effort in man-months.

KDSI is the number of thousand delivered source instructions.

TDEV is the development time.

The coefficients a, b, c and d are dependent upon the 'mode of development which Boehm
classified into 3 distinct modes:

1. Organic - Projects involve small teams working in familiar and stable environments.

Eg: - Payroll systems.

2. Semi - Detached - Mixture of experience within project teams. This lies in between

organic and embedded modes.

Eg: Interactive banking system.

3. Embedded: - Projects that are developed under tight constraints, innovative, complex and

have volatility of requirements.

Eg: - nuclear reactor control systems.

Development mode A B C D

Organic 3.2 1.05 2.5 0.38

Software process and project management Page 87

Semi-detached 3.0 1.12 2.5 0.35

Embedded 2.8 1.20 2.5 0.32

In the intermediate mode it is possible to adjust the nominal effort obtained from the model by

the influence of 15 cost drivers. These drivers deviate from the nominal figures, where particular

project differ from the average project. For example, if the reliability of the software is very high,

a factor rating of 1.4 can be assigned to that driver. Once all the factors for each driver have been

chosen they are multiplied to arrive at an Effort Adjustment Factor (EAF).
The actual steps in producing an estimate using the intermediate COCOMO model are:

1. Identify the 'mode' of development for the new project.

2. Estimate the size of the project in KDSI to derive a nominal effort prediction.

3. Adjust the 15 cost drivers to reflect your project, producing an error adjustment factor.

4. Calculate the predicted project effort using equation 1 and the effort adjustment factor.

5. Calculate the project duration using equation 2.

Drawbacks:

1. It is hard to accurately estimate KDSI early on in the project, when most effort estimates are
required.

2. Extremely vulnerable to mis-classification of the development mode.

3. Success depends largely on tuning the model to the needs of the organization, using historical

data which is not always available.

Advantages:

1. COCOMO is transparent. It can be seen how it works.

2. Drivers are particularly helpful to the operator to understand the impact of different factors

that affect project costs.

Software process and project management Page 88

Phases Phases

Inception and elaboration Construction ad transitionArchitecture and applications have different

units of mass-scale and size. Scale ismeasured in terms of architecturally significant elements such

as classes, components, processes and nodes. Size is measured in SLOC or megabyte of executable

code. Next generation environments and infrastructures are moving to automate and standardize

many of the management activities, thereby requiring a lower percentage of effort for overhead

activities as scale increases. The two major improvements in next-generation cost estimation

models are.

1. Separation of the engineering stage from the production stage to differentiate between

architectural scale and implementation size.

2. Rigorous design notations such as UML to be more standardized. The automation of
the construction process in next-generation environments is shown below.

Software process and project management Page 89

	Faculty In-Charge HOD-CSE
	IV Year B.Tech CSE –I Sem L T P C
	OBJECTIVES:
	(Core Elective-V)
	UNIT I
	UNIT II
	UNIT III
	UNIT IV
	Project Control and process instrumentation
	UNIT V
	TEXT BOOKS:
	REFERENCE BOOKS:
	OUTCOMES:
	UNIT I
	Process Reference Models
	Part-1 software Process Maturity Software Maturity Framework
	Software Process Maturity Framework Five Maturity Levels:
	Basic Principles
	Six Basic Principles of Software Process Change
	2. Ultimately, everyone must be involved.
	3. Effective changes require the team to have common goals and knowledge of the current process.
	4. Change is continuous
	5. Software process changes will not be retained without conscious effort and periodic reinforcements
	6. Software process improvement requires investment
	Software Process Maturity Assessment
	Software Process Assessment Cycle
	SCAMPI
	Part -2 Process Reference Models Capability Maturity Model(CMM)
	Limitations of CMM Models
	Why Use CMM?
	PSP model Framework Activities
	TSP Framework Activities
	Benefits of TSP
	UNIT – II
	Life-Cycle Phases and Processartifacts
	Part –I Software Project Management Renaissance Conventional Software Management
	All three analyses given the same general conclusion:-

	IN THEORY:-
	2. In order to mange and control all of the intellectual freedom associated with software development one should follow the following steps:
	- Software requirements definition
	These steps addition to the analysis and coding steps
	-There are five improvements to the basic waterfall model that would eliminate most of the development risks are as follows:
	a) Complete program design before analysis and coding begin (program design comes first):-
	b) Maintain current and complete documentation (Document the design):-
	c) Do the job twice, if possible (Do it twice):-
	d) Plan, control, and monitor testing:-
	e) Involve the customer:-

	IN PRACTICE:-
	ii) Late Risk Resolution
	- It includes four distinct periods of risk exposure, where risk is defined as “the probability of missing a cost, schedule, feature, or quality goal”.
	Project Stakeholders :
	v) Focus on Documents and Review Meetings
	Barry Boehm‟s Top 10 “Industrial Software Metrics”:
	Evolution of Software Economics
	Reduce Software Size:
	Improving Software Economics
	REDUCING SOFTWARE PRODUCT SIZE:
	OBJECT ORIENTED METHODS AND VISUAL MODELING:

	Booch described the following three reasons for the success of the projects that are using Object- Oriented concepts:
	He also suggested five characteristics of a successful OO-Project,
	REUSE:

	COMMERCIAL COMPONENTS
	- Macro process:
	- Micro process:
	IMPROVING TEAM EFFECTIVENESS:
	In general, staffing is achieved by these common methods:
	Staffing of key personnel is very important:
	Important Project Manager Skills:
	Important Software Architect Skills:
	IMPROVING AUTOMATION THROUGH SOFTWARE ENVIRONMENTS
	PEER INSPECTIONS: A PRAGMATIC VIEW:
	THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING
	10) Inspect the code: Examine the detailed design and code is a much better way to find the errors than testing.
	12) People are the key to success: Highly skilled people with appropriate experience, talent, and training are key. The right people with insufficient tools, languages, and process will succeed.
	vii) Avoid tricks. Many programmers love to create programs with tricks- constructs that perform a function correctly, but in an obscure way. Show the world how smart you are by avoiding tricky code.
	xii) Analyze causes for errors. It is far more cost-effective to reduce the effect of an error by preventing it than it is to find and fix it. One way to do this is to analyze the causes of errors as they are detected.
	THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT
	PART-II Life cycle phases and process artifacts
	LIFE-CYCLE PHASES
	ENGINEERING AND PRODUCTION STAGES :
	1. INCEPTION PHASE:
	PRIMARY OBJECTIVES
	ESSENTIAL ACTIVITIES:
	2. ELABORATION PHASE
	PRIMARY OBJECTIVES
	ESSENTIAL ACTIVITIES
	3. CONSTRUCTION PHASE
	PRIMARY OBJECTIVES
	ESSENTIAL ACTIVITIES
	4. TRANSITION PHASE
	PRIMARY OBJECTIVES
	ESSENTIAL ACTIVITIES
	Artifacts of the Process
	THE ARTIFACT SETS
	THE MANAGEMENT SET
	- project personnel:
	THE ENGINEERING SETS:
	- Requirement artifacts are evaluated, assessed, and measured through a combination of
	2) DESIGN SET:
	The design set is evaluated, assessed, and measured through a combination of
	3) IMPLEMENTATION SET:
	4) DEPLOYMENT SET:
	Each artifact set uses different notations to capture the relevant artifact.
	ARTIFACTS EVOLUTION OVER THE LIFE CYCLE
	Fig: Life-Cycle evolution of the artifact sets
	MANAGEMENT ARTIFACTS:
	Business case:
	Engineering Artifacts
	Pragmatic Artifacts
	Model-Based Software Architectures INTRODUCTION:
	ARCHITECTURE : A MANAGEMENT PERSPECTIVE
	From the management point of view, three different aspects of architecture
	There is a close relationship between software architecture and the modern software development process because of the following reasons:
	ARCHITECTURE: A TECHNICAL PERSPECTIVE
	Most real-world systems require four types of views:

	UNIT-III
	Process Planning
	Part –I Work flows and check points of process Workflows of the Process:
	Software Process Workflows
	Iteration Workflows
	CHECKPOINTS OF THE PROCESS
	Three types of joint management reviews are conducted throughout the process:
	MAJOR MILESTONES:
	MINOR MILESTONES:
	PERIODIC STATUS ASSESSMENTS:
	Iterative Process Planning:
	Part-II Process Planning Work breakdown structures
	3) Third-level elements:
	PLANNING GUIDELINES:

	UNIT-IV
	Project Control and process instrumentation
	Part-1 Project Organizations and Responsibilities Project Organizations and Responsibilities
	1) Line-Of-Business Organizations:
	Project Review Authority (PRA)
	Infrastructure
	2) Project organizations:
	 Business case Customer interface, PRA interface
	 Status assessments Risk management
	 Process improvement
	Software Development Software Architecture Software Assessment System engineering Administration
	3) EVOLUTION OF ORGANIZATIONS:
	Introductory Remarks:
	MANAGEMENT INDICATORS:
	Write note on lifecycle expectations.(13.3 table)
	Write note on pragmatic software metrics

	UNIT V
	CCPDS-R Case Study and Future Software Project Management Practices
	CCPDS-R Case Study and Future Software Project Management Practices MODERN PROJECT PROFILES
	8.1.4 Teamwork among stakeholders
	Principles of Software Management
	 Complexity control
	 Performing automated analysis
	NEXT GENERATION SOFTWARE ECONOMICS
	3. MODERN PROCESS TRANSITIONS
	The lower-level managers and the middle level managers should participate in the project development
	Tangible design and requirements
	Assertive Demonstrations are prioritized
	The performance of the project can be determined earlier in the life cycle.
	Earlier increments will be adolescent
	Artifacts tend to be insignificant at the early stages but proves to be the most significant in the later stages
	Identifying and Resolving of real issues is done in a systematic order
	Everyone should focus on quality assurance
	CASE STUDIES:
	Drawbacks:
	Advantages:
	Phases Phases

